
Identifying CAD Objects and Behaviors as a Means of Adapting to Designers

Doris S. Shaw and DerShung Yang, U.S. Army Construction Engineering Laboratory
P-0. Box 9005, Champaign, IL 61826-9005

James H. Garrett, Jr. and Suresh Bhavnani , Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract: Human beings learn to communicate through
mutual eflorts to develop shared understandings within a
given context. With neural network technology, computers
may learn to identify objects and behaviors in the CAD
context by which they may “understand” the needs of
designers. This capability can enable the computer to
respond adaptively to assist it&idual users.

Introduction

The possibility we would like to propose in this paper is,
If we can identify objects and the way they are constructed
in a CAD system, then the computer can use the
information to adaptively support individual designers.
CAD systems have become more and more complex in
order to appeal to wider and wider ranges of customers.
CAD is used for everything from construction engineering
to jewelry design and is capable of representing drawing
scales varying from microscopic organisms to the solar
system. The systems include thousands of commands and
the general interface permits users to access all of them. In
addition, working methods and add-on tools for particular
tasks are special&d for different domains. Techniques that
are necesmry for one user may unnecessarily complicate the
use of the system for someone else.

CAD designers have tried to manage the interface in
different ways. The long menus are often presented in
scrolling pages or tree structures. Menus are provided with
other menus that pull-down, pop-up, or display a
bewildering array of icons that pull, pop, branch, and scroll.
Prompts may ask for key-ins; dialogue boxes require
settings, toggles, or selections. Hypertext buttons open
windows that may be sized, closed, or lowered. The job of
making a selection from the many options is confusing,
even if the user is aware of all the choices and knows which
one is appropriate for the task at hand. Many professionals
who use CAD have complained that it takes so much time
to learn the system, which is updated (sometimes with
major changes) at least once a year, that they either have
little time to practice their profession after mastering the
software or else they give up CAD along with the time and
cost savings that automation might offer them.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct comrnerdal advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

1993 ACM O-89791 -558-5/93/0200/0278

Communication and Learning

The answer involves better communication between people
and machines. Admonitions for systems designers
suggested by Card, Moran and Newell include that the
designer know about “The psychology of the user” and
“specify the user population” [l], but as we have seen, the
user population in the case of a CAD system is likely to be
too broad for such directives. One solution is for the
system to communicate adaptively with each individual
user, which requires that the computer learn something
about the user as the communication is taking place. How
that might be accomplished will be the topic that follows.

Communication between humans is not exact or based on
rules. It depends upon overlapping experiences by which
people create shared meaning [2]. The effectiveness of the
communication is measured by the response it receives.
For example, it is quite possible for two people to have
somewhat different meanings when they hear the word,
“car,” but to have enough commonality to produce effective
behaviors, If someone shouts, “car” at a person crossing
the street, almost everyone would respond by moving
quickly to the nearest curb - probably an appropriate
response. If, on the other hand, a person asks how long it
takes to go from point A to point B by car, the answer
might vary depending upon individual interpretations of the .
word, “car.” The meaning is dependent upon the context
and it evolves with greater understanding as the
communication proceeds.

Human learning may be experiential, as Seymour Papert
learned about gears when a child [3], or from abstract
sources such as reading books and looking at pictures. In
order to arrive at appropriate responses and working
relationships, it is helpful if the communicating pair
actively attempts to build understanding and make use of
coexisting indicators of the intended meaning. When using
images, which is the concern of this paper, we must
remember always that the picture is not the object itself,
“The picture is a model of reality” [4]. Reaction to a
picture must be to the reality that it depicts, even though
the method of learning that reality is different for different
people.

It is unlikely that a computer can experience a picture in the
same way a person does. To a computer, a graphic is a
collection of coordinates, points, and rules organized in a
particular sequence in an identified place in its memory.
With these, the computer can produce an image that a

278

person can recognize as a model of reality. The person can
draw an object which the computer converts to c~~rdi~tes,
points, and rules and stores them in sequence. If the person
and the machine are to share the meaning of a graphic, the
method of learning the graphic will no doubt be different,
but there must be some overlap of experience if they are to
communicate and we can expect the meaning to evolve over
time. We know that the way a person draws a picture
depends upon what he thinks the meaning of the picture is
[S]. Is it possible for a computer to learn to predict
meanings from the construction of an object and learn to
differentiate between different images?

Image Understanding In A CAD System

Image understanding has always been a very interesting,
very practical, and yet very difficult research topic in
computer science. Image understanding, in a general sense,
ranges from simple two dimensional (2D) pattern
recognition to sophisticated three dimensional (3D) scene
analysis, with the common goal of mapping the image to
the reality it represents. The technical difficulty of image
understanding in a CAD system lies between these two
extremes, which suggests that there may be a potential for
success in the perceivable future.

The difficulties in image understanding are largely due to
the distortion of objects in the image. No matter what
approach it employs, an image understanding system
usually falls short when the input image is distorted in
some way that the system does not expect. Unfortunately,
the number of ways that an image might be distorted is
infinite. Only few forms of these distortions, such as
translations, rotations, or scalings, can be described
mathematically and thus be handled beforehand. All other
distortions, such as variations in handwritten characters,
have to be handled purely by the system’s own
generalization capability. The quality of a generalization
should be judged by the overlap between the system’s
prediction and human perception of reality, which is the
fundamental challenge of image understanding.

Several special features of a CAD system lead us to believe
that image understanding in a CAD system can be achieved.
In a CAD system, distortions can be limited by using pre-
cision commands such as “GRID.” Noise that might exist
in a computer-scanned photograph is normally not present
on a CAD window. The temporal information about how
the user draws an object can be easily monitored. Raster
images and symbolic descriptions of all drawing entities are
both available. We believe that all these features can pro-
vide sufficient assistance to the task of image understanding
within a CAD system. The following sections describe our
prototype system that utilizes the spatial and temporal
information to recognize “cells” in a CAD system.

Cell Recognition

Most CAD systems provide commands to manipulate a
group of drawing entities as a whole, which is what we

shall call “cells.” Examples of cells in an architectural
design can be doors, windows, or pieces of furniture. Cells
can be copied, and all properties such as textual descriptions
that are associated with the cells will be copied as well.
Using cells can thus, on one hand, improve design quality
by enforcing objects of the same type to be drawn in the
same way, and on the other hand, speed up the design
process by avoiding redrawing the same type of objects
many times. The U.S. Army Corps of Engineers has
compiled a set of standard cell libraries that include more
than one thousand cells to be used for producing CAD
drawings.

The benefits of using cells are compromised by the
difficulties in managing cells. The above mentioned
standard set of cells covers seven categories and is stored in
16 cell libraries. On average, each cell library contains
nearly 100 cells. To utilize a cell, the CAD user must,
first, be aware of the existence of that cell. Second, the
user has to know which cell library that cell is in. Third,
the user has to know the name of cell, which is usually an
abbreviated name, e.g., SHNG for ‘single hinged door,’ or
numerically, e.g., ‘MPOO28’ for ‘gas piping.’ In most
cases, the CAD user cannot meet any of these three
requirements and is thus unable to take advantage of using
the library of cells. Therefore, we designed a prototype
system that can recognize cells while the user is drawing on
the screen.

Our Prototype System

Our prototype system consists of three parts: The fust part
determines where the user is working and captures the
screen image surrounding the working area. The second
part feeds the captured screen image to a neural network for
recognition. The neural network then returns the indices to
the two cells that are most similar to what the user is
drawing. The third part finally uses these indices to bring
the cell to the user’s attention. The full description of this
system is beyond the scope of this paper. Interested readers
should refer to Yang, Garrett and Shaw [6].

Capturing the Object while Drawing

Our program allows the user to draw freely in a design
window. How to isolate the part of the drawing where the
user is currently working is one of the problems that has to
be overcome. Otherwise, our program has to deal with
everything in the design window, which significantly
complicates the problem. The entity that the user is
currently manipulating is obviously part of the object. The
question remains, what the other parts of the object are. As
mentioned earlier, two types of information that are
available during a CAD design session can give us clues
about how to approach this problem. First, cells (objects)
tend to be small in scale. In other words, we should look at
entities that are close to the entity which the user is
manipulating. We call this characteristic “spatial
proximity.” Second, we have argued elsewhere that a CAD
user tends to complete the drawing of one object before

279

starting on another object [71. This “temporal proximity”
suggests that we look at those entities which were drawn
recently. Based on the spatial and the temporal proximities,
we can maintain a window, both in time and in space, to
monitor the user’s drawing process and determine where the
user is focusing his or her drawing activity.

Using the temporal proximity, we maintain a window W to
cover the last n entities drawn consecutively. The window
size (n) is determined by using the spatial proximity.
When an entity is created or modified, a window w
containing this entity is also created. The spatial
relationship between W and w determines how W should be
updated to accommodate the newly created or modified
entity in w. For example, if w is far away from W, we
assume the user is staring a new object and make w as the
new W.

Once W is updated, the screen image of W is captured. The
captured image is then converted into a 48X48 pixel bitmap
image. pixels with low density such as the grid points are
discarded. This image is then normalized in size and placed
in the center of the input area before being presented as
input to a neural network. Using both the temporal and the
spatial information, we are able to isolate the entities that
are possibly part of the object that the user is drawing and
simplify the problem of recognizing many cells on a large
design window to recognizing a single cell on a small
48X48 pixel window.

Neural Network Cell Recognition

Many neural networks have been proposed in recent
literature to recognize objects regardless of the presence of
translations, rotations, and/or scalings. We have studied
five different neural network approaches to the problem of
transformation-invariant pattern recognition [8]. We chose
Le Cun, et al’s Zipcode Net [9] as the classifier for our
system because of its good generalizability in both
rotations and scalings. The Zipcode Net’s performance on
translation is poor, but can be remedied by adding an
appropriate normalization process, such as Yuccer and
Oflaxer’s RST-blocks [IO]. Also, the Zipcode Net is very
robust with respect to random noise.

Before we describe the Zipcode Net. we need to first describe
the preprocessing process, i.e., the RST-blocks. The RST-
blocks can normalize a raw image in size, location, and
orientation. The T block can normalize the location by
aligning the center of the gravity to the center of the input
area. The S block normalizes the image size by forcing all
images to have the same average radius. The R block
rotates the image such that the axis of maximal variance
become the x-axis. Our experiments [8] showed that the
RST-blocks solve the translation problem for the Zipcode
Net. However, the RST blocks were vulnerable to random
noise. We found the R block was to be blamed for this
disadvantage due to the calculation of the axis of maximal
variance. Therefore, we chose to use only S and T blocks
for preprocessing and used four versions of the cells, each

rotated by 90 degrees, to train the network in order to solve
the rotation problem.

The Zipcode Net is a variation of the well-known backprop-
agation network and is used to recognize handwritten
zipcode digits. The Zipcode Net imposes more topological
constraints than the traditional backpropagation network
such that not all units in adjacent layers are connected.
Figure 1 shows a typical Zipcode Net topology.

Figure 1: A typical Zipcode Net

In Figure 1, an 8X8 pixel area is used as the input layer.
Three output units are used in the output layer. The second
layers consists of two “feature maps,” each of size 3X3
pixels. In each feature map, each unit accepts inputs from
different areas from the input layer. For example, the up-
per-left unit in both of the feature maps receives inputs
only from the upper-left heavily-shaded 4X4 pixel area in
the input layer. Similarly, the lower-right unit in the two
feature maps receives inputs from the lower-right lightly-
shaded 4X4 pixel area in the input laya This type of con-
nection is called “local connectivity.” In traditional back-
propagation topologies, all the units in the second layer are
connected to all the units in the input layer. Obviously,
local connectivity greatly reduces the complexity of the
network. This reduction in complexity improves not only
the efficiency, but also the genemlixability of the network.

Another special feature of the Zipcode Net is “weight
sharing.” Each feature map functions as a feature detector.
The “features” that are important for distinguishing between
different objects are determined solely by the network itself.
In other words, as the training proceeds, the feature maps
can adjust themselves to fmd the features that are critical for
recognizing objects. Weight sharing refers to the fact that
all of the units in a feature map share the same set of
incoming weights. The purpose of weight sharing is to
force the detection of a particular feature qardless of where
the feature appears in the input area. A by-product of
weight sharing is to reduce the complexity of the network.

280

Limitations

Although our network has been trained to recognize 23 cells
that are commonly seen in architectural floor plans, it
inevitably has its limitations. First, it is unclear how the
network scales when more and more cells are added to the
network. Eventually, we have to handle more than one
thousand cells. We are not sure how large the network will
be then, and how long it will take to train the network.
Second, the training process is not incremental. Adding or
deleting cells requires that the training process be rerun
from scratch, which seems unnecessary. Third, the
network’s generalization is not always consistent with
human expectation. Occasionally, the network might
respond with cells that are not similar to the target cell
from the user’s viewpoint. Finally, the network cannot
determine the best configuration itself. Training the
network thus involves lots of trial-and-error effort, which is
very time-consuming.

Despite all of these limitations, we feel that image
understanding in a CAD system can be realized in the near
future for two reasons. The first reason is that we have not
fully utilized the temporal and the spatial information
available in a CAD design session. Further investigation
on how to utilize the information might lead to a
significant improvement of our system. The other reason
is the tremendous effort that is currently being spent on
advancing neural network technology and other related
artificial intelligence techniques.

Skill Level and Behavior Characteristics

Neural networks may also assist computer learning in
another important area. A study of indicators of user skill
level has revealed some preliminary results to guide future
research. We have found that experts used a wider range of
commands to achieve a higher quality drawing. Experts
used more setup commands and less creation commands
than novice users. Users with less experience produced a
high number of create-erase pairs and produced a lower
quality drawing. Such behavior signatures can easily be
detected during a CAD design session. A neural network
approach to recognizing these behavior patterns in users
could take several approaches.

One approach might be to have the units of the input layer
represent each of the possible commands. The activation
values of these units would represent the frequency of the
command usage by the user, normalized over the total
number of commands used by the user. This type of
network would learn, for example, that experts use more
setup commands compared to inexperienced users.

Another approach might be to have a discrete set of
sequential events form the input for several different neural
nets. So, for example, the first neural net would accept as
input the first 20 events performed by a user and the next
neural network would accept as input the next 20 events.
Each event would be represented by a set of input units

representing each of the possible classes of commands that
can be invoked within an event. As this approach
represents the sequence of events rather than only the
frequency, the network could learn that in the first 20
events, inexperienced users have many creatcerase cycles.

In detection mode, a controller could pass, in real time, the
appropriate number of events to each neural net. The
activated neural net would then compute the experience
category of the user generating these events.

However, more important than classifying the skill level of
a user is the ability to map from the sequence of user
commands to a set of higher-level behavior characteristics
that are indicative of the presence or absence of usage
problems (i.e., the “features” upon which a diagnosis of
usage problems can be logically inferred using an AI-based
diagnostic approach). For example, recognizing the
presence of “cmate-erase” loops would be useful in that they
are symptoms of various CAD usage problems for which
specific advice can be render& Current research efforts are
aimed at using machine learning (specifically neural
networks) to cluster patterns of user commands into sets of
common, recognizable CAD behavior characteristics (e.g.,
mateerase loops) that can then be recognized. Given a set
of these CAD usage characteristics, a diagnostic system can
then be used to infer the presence of problems. Given some
identification of the problems, a remediation system can
then be used to infer the appropriate advice to render to
address the identified problems. Thus, the mapping from
user commands into these CAD usage characteristics is the
first step to providing adaptive assistance during a CAD
session.

Let us look at our main theme of this paper again: If we
can ident@ objects and the way they are constructed in a
CAD system, then the computer can use the ir$ormation w
adaptively support individual &signers. The above sections
try to validate the plausibility of the “if” part of our claim,
i.e., computers can identify objects and behavior as users
draw in a CAD system. Now, we proceed with the “then”
part of our claim.

The Adaptive Workstation

Making the CAD system easier to use calls for an adaptive
workstation that can tailor information to the needs of the
user. The selection of information should be optimal for
the task at hand, unobtrusive, and appropriate in language
and approach. As Amo Penzais [ll], Nobel Prize
researcher, has stated, “Ideas flow better with needed facts at
our fingertips - fewer interruptions for look-ups, and fewer
detours down blind alleys.” Adapting the computer
response to individual designers depends upon linking two
different types of information.

One body of information consists of the system capabilities
that are accessible to users through the CAD system.
Design drawings connect with databases containing catalog
information and detailed descriptions. Various software

281

tools such as scheduling expert systems, analysis packages
for energy consumption, and object oriented design systems
canbeaccess4byusem.

The other class of data relates to the person using the
workstation. This includes the information we hope to learn
from the objects that are being constructed, the user
characteristics of the user and other factors which may
contribute to understanding the designe?s needs.

Modelling

The key to automating the liaison between users and
information lies in representing mental processes and
knowledge structures in a way that can link the two. One
methodology that has been successful in diagnostic /
prescriptive systems has been the construction of
mathematical models which associate misconceptions or
incomplete knowledge with appropriate assistance. In one
study, observation and classification of wrong answers
revealed that certain conceptual error patterns mapped into
specific areas in a two dimensional graph. If the
coordinates of a student’s responses were located in certain
areas of the graph, particular deficiencies could be diagnosed
and the task of providing remedial information was
simplified and made mom efficient [12]. Such an approach
may be useful in managing automated architectural and
engineering design knowledge systems to make assistance
available to the designer as it is needed.

CAD File Information

Specific parallels to the diagnostic / remedial model can be
suggested in the architectural and engineering context. In
the above cited study of children’s arithmetic, when it was
discovered that a student made certain types of errors in
subtracting mixed fractions that occurred from not
understanding how to convert fractions to different forms,
instruction about the identity 1 = x/x was offered to assist
the student. The response patterns were observed in a
computer file which classified them and mapped them into
the “Rule Space” of the graph. Similarly, a designer’s use
of symbols can be identified with specific disciplines, such
as design, construction or building maintenance. CAD
usage characteristics fall into recognizable patterns. It has
been suggested that behaviors characteristic to the design
stage may also be recognized from CAD file information.
These patterns can be classified and mapped in order to
manipulate the system. CAD files appear to be an
appropriate site for observations leading to understanding
the designer (at least to the point of being able to provide
useful advice).

A Knowledge Model

Once a profile of the user is determined, the computer can
facilitate communication between the user and knowledge,
but the knowledge must first be structured. The knowledge
model must represent the information in such a way that

the system can add new knowledge as it becomes available.
A useful model might reflect the relationships between
skills and usage characteristics, stages of design, and
specific disciplines.

One structure for the knowledge system that might be used
by the adaptive workstation could be thought of as a three
dimensional knowledge model linked through nodes with
common centers. At each node, the system could be rotated
to other planes in which related information is located. The
slope of the plane would be determined by its x, y, and z
coordinates where, for example, x, y, and z represent intent
or discipline, stage of design, and characteristic usage
pattern of the user. When the system discovers a specific
design intent during a session, a cluster of knowledge
located on a calculated plane would be brought to the
attention of the user. As the user moves from node to
node, the different planes would be related to the problem at

Figures 2 and 3. show how the information in such a
system might be modelled. The particular information
plane would be determined by its discipline. stage, and
usage characteristic cc~~dinates. If a user is in early concept
design he or she would need a different set of tools from the
analysis phase of design and would see a cluster on a
different plane. The nodes associated with building design
stages are all in the highlighted plane as shown in Figure 2.
Selecting Specifications shifts the plane to highlight the

rrgure L. ~uucnrre r\oue
Building Design Phase Considerations

282

Figure 3. Specifications Node
Discipline Specific Intents

nodes associated with the specifications of different
disciplines as in Figure 3. and to dim all other planes.
Planes may also be brought into focus by the computer
when a need for the information is diagnosed. The three
dimensional model shown here is not the user interface, but
it represents the informational resources which the interface
would make available to the user, a much simpler set of
options to display than the usual design environment. New
information would require that its discipline, stage, and
behavior characteristic approach be specified in order to
calculate its position in the model.

‘Information ‘Relationships

Different types of relationships within the model should be
considered. Mathematical links may exist to compare the
user data with architectural and engineering requirements.
For example, design stages could be represented in
sequential or linear order. Tree structured hierarchies, such
as discipline specific intents, may have abstraction levels as
well as numbered sets of members that may be sequenced.
Distance between related nodes may be significant as well
as angles between two pieces of information. These and
other mathematical relationships must be studied and
quantified if possible in order to construct a model that
would make relationships between user needs and design
knowledge understandable to a computer.

Semantic relationships between data are also being codified.
If the system could use the relationships implicit in the

knowledge structure, it should be able to place new
information in the model and extract user relationships from
it later. The workstation would then be able to adapt to the
needs of the user.

Conclusions

In our thesis, lfwe can identijj~ objects and the way they are
constructed in a CALI system, then the computer can use
the information to aakptively support individual designers,
we have made the most progress with object recognition.
Still there are many unanswered questions. If the network’s
generalization can be made more consistent with human
expectation... If user behavior patterns can be shown to
indicate needs for performance support.,. If a knowledge
model can be described into which tools, instruction, and
information can be inserted and accessed... If...

References

l.Card, Stuart K., Moran, Thomas P. and Newell, Allen
(1983). The Psychology of Human-Computer Interaction.
Hillsdale, NJ.: Lawrence Rrlbaum Associates, Inc.

2.Delia, Jesse G. and Swanson, David L. (1976). The
Nature of Numan Communication. Chicago: Science
Research Associates, Inc.

3.Papert, Seymour (1980). Mindstorms. New York: Basic
Books, Inc.

4.Wittgenstein, Ludwig (1922). Tractatus Logico-
Philosophicus. New York Hatcourt, Brace & Co., Inc.

S.Van Sommers, P. (1984). Drawing and cognition.
Cambridge: Cambridge University Press.

6.Yang, DerShung, Garrett, James H. and Shaw, Doris
S.(1992). “Cell management using neural network
approaches,” In Proc. of the 3rd Government Neural
Network Applications Workshop.

7.Yang, DerShung and Shaw, Doris S. (1992). “Object
recognition in the design environmenr A neural network
approach.” In Proc. of the 6th Int’l Conf. on Systems
Research and Cybernetics, Vol. 1, Baden-Baden, Germany.

8.Yang, DerShung, Garrett, James H!.,and Shaw, Doris
S.(1992). “A comparative study of neural networks that
can perform transformation-invariant pattern recognition,”
To appear in Proc. of Int’l Joint Conf. on Neural Network,
Bejing, China.

9.Le Cun, et al. [1989]. “Backpropagation applied to
handwritten zip code recognition,” Neural Computation,
1541-551.

lO.Yuccer, C. and Oflaxer, K. [1991]. “A rotation, scaling,
translation invariant pattern classification system,” In
Proc. Sixth Int’l Symp. on Computer and Information
Science, 859-869.

1 l.Penxais, A. (1989). Ideas and information. New York:
W.W. Norton & Co. 170.

12.Shaw. D. (1986). “Cognitive error diagnosis and
prescription for fraction arithmetic,” In Proc. of the Int’l
Association for the Development of Computer-based
Instructional Systems Conference. Bellingham, WA:
ADCIS. pp. 324-331.

283

