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Abstract: Human beings learn to communicate through 
mutual eflorts to develop shared understandings within a 
given context. With neural network technology, computers 
may learn to identify objects and behaviors in the CAD 
context by which they may “understand” the needs of 
designers. This capability can enable the computer to 
respond adaptively to assist it&idual users. 

Introduction 

The possibility we would like to propose in this paper is, 
If we can identify objects and the way they are constructed 
in a CAD system, then the computer can use the 
information to adaptively support individual designers. 
CAD systems have become more and more complex in 
order to appeal to wider and wider ranges of customers. 
CAD is used for everything from construction engineering 
to jewelry design and is capable of representing drawing 
scales varying from microscopic organisms to the solar 
system. The systems include thousands of commands and 
the general interface permits users to access all of them. In 
addition, working methods and add-on tools for particular 
tasks are special&d for different domains. Techniques that 
are necesmry for one user may unnecessarily complicate the 
use of the system for someone else. 

CAD designers have tried to manage the interface in 
different ways. The long menus are often presented in 
scrolling pages or tree structures. Menus are provided with 
other menus that pull-down, pop-up, or display a 
bewildering array of icons that pull, pop, branch, and scroll. 
Prompts may ask for key-ins; dialogue boxes require 
settings, toggles, or selections. Hypertext buttons open 
windows that may be sized, closed, or lowered. The job of 
making a selection from the many options is confusing, 
even if the user is aware of all the choices and knows which 
one is appropriate for the task at hand. Many professionals 
who use CAD have complained that it takes so much time 
to learn the system, which is updated (sometimes with 
major changes) at least once a year, that they either have 
little time to practice their profession after mastering the 
software or else they give up CAD along with the time and 
cost savings that automation might offer them. 
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Communication and Learning 

The answer involves better communication between people 
and machines. Admonitions for systems designers 
suggested by Card, Moran and Newell include that the 
designer know about “The psychology of the user” and 
“specify the user population” [l], but as we have seen, the 
user population in the case of a CAD system is likely to be 
too broad for such directives. One solution is for the 
system to communicate adaptively with each individual 
user, which requires that the computer learn something 
about the user as the communication is taking place. How 
that might be accomplished will be the topic that follows. 

Communication between humans is not exact or based on 
rules. It depends upon overlapping experiences by which 
people create shared meaning [2]. The effectiveness of the 
communication is measured by the response it receives. 
For example, it is quite possible for two people to have 
somewhat different meanings when they hear the word, 
“car,” but to have enough commonality to produce effective 
behaviors, If someone shouts, “car” at a person crossing 
the street, almost everyone would respond by moving 
quickly to the nearest curb - probably an appropriate 
response. If, on the other hand, a person asks how long it 
takes to go from point A to point B by car, the answer 
might vary depending upon individual interpretations of the . 
word, “car.” The meaning is dependent upon the context 
and it evolves with greater understanding as the 
communication proceeds. 

Human learning may be experiential, as Seymour Papert 
learned about gears when a child [3], or from abstract 
sources such as reading books and looking at pictures. In 
order to arrive at appropriate responses and working 
relationships, it is helpful if the communicating pair 
actively attempts to build understanding and make use of 
coexisting indicators of the intended meaning. When using 
images, which is the concern of this paper, we must 
remember always that the picture is not the object itself, 
“The picture is a model of reality” [4]. Reaction to a 
picture must be to the reality that it depicts, even though 
the method of learning that reality is different for different 
people. 

It is unlikely that a computer can experience a picture in the 
same way a person does. To a computer, a graphic is a 
collection of coordinates, points, and rules organized in a 
particular sequence in an identified place in its memory. 
With these, the computer can produce an image that a 
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person can recognize as a model of reality. The person can 
draw an object which the computer converts to c~~rdi~tes, 
points, and rules and stores them in sequence. If the person 
and the machine are to share the meaning of a graphic, the 
method of learning the graphic will no doubt be different, 
but there must be some overlap of experience if they are to 
communicate and we can expect the meaning to evolve over 
time. We know that the way a person draws a picture 
depends upon what he thinks the meaning of the picture is 
[S]. Is it possible for a computer to learn to predict 
meanings from the construction of an object and learn to 
differentiate between different images? 

Image Understanding In A CAD System 

Image understanding has always been a very interesting, 
very practical, and yet very difficult research topic in 
computer science. Image understanding, in a general sense, 
ranges from simple two dimensional (2D) pattern 
recognition to sophisticated three dimensional (3D) scene 
analysis, with the common goal of mapping the image to 
the reality it represents. The technical difficulty of image 
understanding in a CAD system lies between these two 
extremes, which suggests that there may be a potential for 
success in the perceivable future. 

The difficulties in image understanding are largely due to 
the distortion of objects in the image. No matter what 
approach it employs, an image understanding system 
usually falls short when the input image is distorted in 
some way that the system does not expect. Unfortunately, 
the number of ways that an image might be distorted is 
infinite. Only few forms of these distortions, such as 
translations, rotations, or scalings, can be described 
mathematically and thus be handled beforehand. All other 
distortions, such as variations in handwritten characters, 
have to be handled purely by the system’s own 
generalization capability. The quality of a generalization 
should be judged by the overlap between the system’s 
prediction and human perception of reality, which is the 
fundamental challenge of image understanding. 

Several special features of a CAD system lead us to believe 
that image understanding in a CAD system can be achieved. 
In a CAD system, distortions can be limited by using pre- 
cision commands such as “GRID.” Noise that might exist 
in a computer-scanned photograph is normally not present 
on a CAD window. The temporal information about how 
the user draws an object can be easily monitored. Raster 
images and symbolic descriptions of all drawing entities are 
both available. We believe that all these features can pro- 
vide sufficient assistance to the task of image understanding 
within a CAD system. The following sections describe our 
prototype system that utilizes the spatial and temporal 
information to recognize “cells” in a CAD system. 

Cell Recognition 

Most CAD systems provide commands to manipulate a 
group of drawing entities as a whole, which is what we 

shall call “cells.” Examples of cells in an architectural 
design can be doors, windows, or pieces of furniture. Cells 
can be copied, and all properties such as textual descriptions 
that are associated with the cells will be copied as well. 
Using cells can thus, on one hand, improve design quality 
by enforcing objects of the same type to be drawn in the 
same way, and on the other hand, speed up the design 
process by avoiding redrawing the same type of objects 
many times. The U.S. Army Corps of Engineers has 
compiled a set of standard cell libraries that include more 
than one thousand cells to be used for producing CAD 
drawings. 

The benefits of using cells are compromised by the 
difficulties in managing cells. The above mentioned 
standard set of cells covers seven categories and is stored in 
16 cell libraries. On average, each cell library contains 
nearly 100 cells. To utilize a cell, the CAD user must, 
first, be aware of the existence of that cell. Second, the 
user has to know which cell library that cell is in. Third, 
the user has to know the name of cell, which is usually an 
abbreviated name, e.g., SHNG for ‘single hinged door,’ or 
numerically, e.g., ‘MPOO28’ for ‘gas piping.’ In most 
cases, the CAD user cannot meet any of these three 
requirements and is thus unable to take advantage of using 
the library of cells. Therefore, we designed a prototype 
system that can recognize cells while the user is drawing on 
the screen. 

Our Prototype System 

Our prototype system consists of three parts: The fust part 
determines where the user is working and captures the 
screen image surrounding the working area. The second 
part feeds the captured screen image to a neural network for 
recognition. The neural network then returns the indices to 
the two cells that are most similar to what the user is 
drawing. The third part finally uses these indices to bring 
the cell to the user’s attention. The full description of this 
system is beyond the scope of this paper. Interested readers 
should refer to Yang, Garrett and Shaw [6]. 

Capturing the Object while Drawing 

Our program allows the user to draw freely in a design 
window. How to isolate the part of the drawing where the 
user is currently working is one of the problems that has to 
be overcome. Otherwise, our program has to deal with 
everything in the design window, which significantly 
complicates the problem. The entity that the user is 
currently manipulating is obviously part of the object. The 
question remains, what the other parts of the object are. As 
mentioned earlier, two types of information that are 
available during a CAD design session can give us clues 
about how to approach this problem. First, cells (objects) 
tend to be small in scale. In other words, we should look at 
entities that are close to the entity which the user is 
manipulating. We call this characteristic “spatial 
proximity.” Second, we have argued elsewhere that a CAD 
user tends to complete the drawing of one object before 
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starting on another object [71. This “temporal proximity” 
suggests that we look at those entities which were drawn 
recently. Based on the spatial and the temporal proximities, 
we can maintain a window, both in time and in space, to 
monitor the user’s drawing process and determine where the 
user is focusing his or her drawing activity. 

Using the temporal proximity, we maintain a window W to 
cover the last n entities drawn consecutively. The window 
size (n) is determined by using the spatial proximity. 
When an entity is created or modified, a window w 
containing this entity is also created. The spatial 
relationship between W and w determines how W should be 
updated to accommodate the newly created or modified 
entity in w. For example, if w is far away from W, we 
assume the user is staring a new object and make w as the 
new W. 

Once W is updated, the screen image of W is captured. The 
captured image is then converted into a 48X48 pixel bitmap 
image. pixels with low density such as the grid points are 
discarded. This image is then normalized in size and placed 
in the center of the input area before being presented as 
input to a neural network. Using both the temporal and the 
spatial information, we are able to isolate the entities that 
are possibly part of the object that the user is drawing and 
simplify the problem of recognizing many cells on a large 
design window to recognizing a single cell on a small 
48X48 pixel window. 

Neural Network Cell Recognition 

Many neural networks have been proposed in recent 
literature to recognize objects regardless of the presence of 
translations, rotations, and/or scalings. We have studied 
five different neural network approaches to the problem of 
transformation-invariant pattern recognition [8]. We chose 
Le Cun, et al’s Zipcode Net [9] as the classifier for our 
system because of its good generalizability in both 
rotations and scalings. The Zipcode Net’s performance on 
translation is poor, but can be remedied by adding an 
appropriate normalization process, such as Yuccer and 
Oflaxer’s RST-blocks [IO]. Also, the Zipcode Net is very 
robust with respect to random noise. 

Before we describe the Zipcode Net. we need to first describe 
the preprocessing process, i.e., the RST-blocks. The RST- 
blocks can normalize a raw image in size, location, and 
orientation. The T block can normalize the location by 
aligning the center of the gravity to the center of the input 
area. The S block normalizes the image size by forcing all 
images to have the same average radius. The R block 
rotates the image such that the axis of maximal variance 
become the x-axis. Our experiments [8] showed that the 
RST-blocks solve the translation problem for the Zipcode 
Net. However, the RST blocks were vulnerable to random 
noise. We found the R block was to be blamed for this 
disadvantage due to the calculation of the axis of maximal 
variance. Therefore, we chose to use only S and T blocks 
for preprocessing and used four versions of the cells, each 

rotated by 90 degrees, to train the network in order to solve 
the rotation problem. 

The Zipcode Net is a variation of the well-known backprop- 
agation network and is used to recognize handwritten 
zipcode digits. The Zipcode Net imposes more topological 
constraints than the traditional backpropagation network 
such that not all units in adjacent layers are connected. 
Figure 1 shows a typical Zipcode Net topology. 

Figure 1: A typical Zipcode Net 

In Figure 1, an 8X8 pixel area is used as the input layer. 
Three output units are used in the output layer. The second 
layers consists of two “feature maps,” each of size 3X3 
pixels. In each feature map, each unit accepts inputs from 
different areas from the input layer. For example, the up- 
per-left unit in both of the feature maps receives inputs 
only from the upper-left heavily-shaded 4X4 pixel area in 
the input layer. Similarly, the lower-right unit in the two 
feature maps receives inputs from the lower-right lightly- 
shaded 4X4 pixel area in the input laya This type of con- 
nection is called “local connectivity.” In traditional back- 
propagation topologies, all the units in the second layer are 
connected to all the units in the input layer. Obviously, 
local connectivity greatly reduces the complexity of the 
network. This reduction in complexity improves not only 
the efficiency, but also the genemlixability of the network. 

Another special feature of the Zipcode Net is “weight 
sharing.” Each feature map functions as a feature detector. 
The “features” that are important for distinguishing between 
different objects are determined solely by the network itself. 
In other words, as the training proceeds, the feature maps 
can adjust themselves to fmd the features that are critical for 
recognizing objects. Weight sharing refers to the fact that 
all of the units in a feature map share the same set of 
incoming weights. The purpose of weight sharing is to 
force the detection of a particular feature qardless of where 
the feature appears in the input area. A by-product of 
weight sharing is to reduce the complexity of the network. 
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Limitations 

Although our network has been trained to recognize 23 cells 
that are commonly seen in architectural floor plans, it 
inevitably has its limitations. First, it is unclear how the 
network scales when more and more cells are added to the 
network. Eventually, we have to handle more than one 
thousand cells. We are not sure how large the network will 
be then, and how long it will take to train the network. 
Second, the training process is not incremental. Adding or 
deleting cells requires that the training process be rerun 
from scratch, which seems unnecessary. Third, the 
network’s generalization is not always consistent with 
human expectation. Occasionally, the network might 
respond with cells that are not similar to the target cell 
from the user’s viewpoint. Finally, the network cannot 
determine the best configuration itself. Training the 
network thus involves lots of trial-and-error effort, which is 
very time-consuming. 

Despite all of these limitations, we feel that image 
understanding in a CAD system can be realized in the near 
future for two reasons. The first reason is that we have not 
fully utilized the temporal and the spatial information 
available in a CAD design session. Further investigation 
on how to utilize the information might lead to a 
significant improvement of our system. The other reason 
is the tremendous effort that is currently being spent on 
advancing neural network technology and other related 
artificial intelligence techniques. 

Skill Level and Behavior Characteristics 

Neural networks may also assist computer learning in 
another important area. A study of indicators of user skill 
level has revealed some preliminary results to guide future 
research. We have found that experts used a wider range of 
commands to achieve a higher quality drawing. Experts 
used more setup commands and less creation commands 
than novice users. Users with less experience produced a 
high number of create-erase pairs and produced a lower 
quality drawing. Such behavior signatures can easily be 
detected during a CAD design session. A neural network 
approach to recognizing these behavior patterns in users 
could take several approaches. 

One approach might be to have the units of the input layer 
represent each of the possible commands. The activation 
values of these units would represent the frequency of the 
command usage by the user, normalized over the total 
number of commands used by the user. This type of 
network would learn, for example, that experts use more 
setup commands compared to inexperienced users. 

Another approach might be to have a discrete set of 
sequential events form the input for several different neural 
nets. So, for example, the first neural net would accept as 
input the first 20 events performed by a user and the next 
neural network would accept as input the next 20 events. 
Each event would be represented by a set of input units 

representing each of the possible classes of commands that 
can be invoked within an event. As this approach 
represents the sequence of events rather than only the 
frequency, the network could learn that in the first 20 
events, inexperienced users have many creatcerase cycles. 

In detection mode, a controller could pass, in real time, the 
appropriate number of events to each neural net. The 
activated neural net would then compute the experience 
category of the user generating these events. 

However, more important than classifying the skill level of 
a user is the ability to map from the sequence of user 
commands to a set of higher-level behavior characteristics 
that are indicative of the presence or absence of usage 
problems (i.e., the “features” upon which a diagnosis of 
usage problems can be logically inferred using an AI-based 
diagnostic approach). For example, recognizing the 
presence of “cmate-erase” loops would be useful in that they 
are symptoms of various CAD usage problems for which 
specific advice can be render& Current research efforts are 
aimed at using machine learning (specifically neural 
networks) to cluster patterns of user commands into sets of 
common, recognizable CAD behavior characteristics (e.g., 
mateerase loops) that can then be recognized. Given a set 
of these CAD usage characteristics, a diagnostic system can 
then be used to infer the presence of problems. Given some 
identification of the problems, a remediation system can 
then be used to infer the appropriate advice to render to 
address the identified problems. Thus, the mapping from 
user commands into these CAD usage characteristics is the 
first step to providing adaptive assistance during a CAD 
session. 

Let us look at our main theme of this paper again: If we 
can ident@ objects and the way they are constructed in a 
CAD system, then the computer can use the ir$ormation w 
adaptively support individual &signers. The above sections 
try to validate the plausibility of the “if” part of our claim, 
i.e., computers can identify objects and behavior as users 
draw in a CAD system. Now, we proceed with the “then” 
part of our claim. 

The Adaptive Workstation 

Making the CAD system easier to use calls for an adaptive 
workstation that can tailor information to the needs of the 
user. The selection of information should be optimal for 
the task at hand, unobtrusive, and appropriate in language 
and approach. As Amo Penzais [ll], Nobel Prize 
researcher, has stated, “Ideas flow better with needed facts at 
our fingertips - fewer interruptions for look-ups, and fewer 
detours down blind alleys.” Adapting the computer 
response to individual designers depends upon linking two 
different types of information. 

One body of information consists of the system capabilities 
that are accessible to users through the CAD system. 
Design drawings connect with databases containing catalog 
information and detailed descriptions. Various software 
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tools such as scheduling expert systems, analysis packages 
for energy consumption, and object oriented design systems 
canbeaccess4byusem. 

The other class of data relates to the person using the 
workstation. This includes the information we hope to learn 
from the objects that are being constructed, the user 
characteristics of the user and other factors which may 
contribute to understanding the designe?s needs. 

Modelling 

The key to automating the liaison between users and 
information lies in representing mental processes and 
knowledge structures in a way that can link the two. One 
methodology that has been successful in diagnostic / 
prescriptive systems has been the construction of 
mathematical models which associate misconceptions or 
incomplete knowledge with appropriate assistance. In one 
study, observation and classification of wrong answers 
revealed that certain conceptual error patterns mapped into 
specific areas in a two dimensional graph. If the 
coordinates of a student’s responses were located in certain 
areas of the graph, particular deficiencies could be diagnosed 
and the task of providing remedial information was 
simplified and made mom efficient [12]. Such an approach 
may be useful in managing automated architectural and 
engineering design knowledge systems to make assistance 
available to the designer as it is needed. 

CAD File Information 

Specific parallels to the diagnostic / remedial model can be 
suggested in the architectural and engineering context. In 
the above cited study of children’s arithmetic, when it was 
discovered that a student made certain types of errors in 
subtracting mixed fractions that occurred from not 
understanding how to convert fractions to different forms, 
instruction about the identity 1 = x/x was offered to assist 
the student. The response patterns were observed in a 
computer file which classified them and mapped them into 
the “Rule Space” of the graph. Similarly, a designer’s use 
of symbols can be identified with specific disciplines, such 
as design, construction or building maintenance. CAD 
usage characteristics fall into recognizable patterns. It has 
been suggested that behaviors characteristic to the design 
stage may also be recognized from CAD file information. 
These patterns can be classified and mapped in order to 
manipulate the system. CAD files appear to be an 
appropriate site for observations leading to understanding 
the designer (at least to the point of being able to provide 
useful advice). 

A Knowledge Model 

Once a profile of the user is determined, the computer can 
facilitate communication between the user and knowledge, 
but the knowledge must first be structured. The knowledge 
model must represent the information in such a way that 

the system can add new knowledge as it becomes available. 
A useful model might reflect the relationships between 
skills and usage characteristics, stages of design, and 
specific disciplines. 

One structure for the knowledge system that might be used 
by the adaptive workstation could be thought of as a three 
dimensional knowledge model linked through nodes with 
common centers. At each node, the system could be rotated 
to other planes in which related information is located. The 
slope of the plane would be determined by its x, y, and z 
coordinates where, for example, x, y, and z represent intent 
or discipline, stage of design, and characteristic usage 
pattern of the user. When the system discovers a specific 
design intent during a session, a cluster of knowledge 
located on a calculated plane would be brought to the 
attention of the user. As the user moves from node to 
node, the different planes would be related to the problem at 

Figures 2 and 3. show how the information in such a 
system might be modelled. The particular information 
plane would be determined by its discipline. stage, and 
usage characteristic cc~~dinates. If a user is in early concept 
design he or she would need a different set of tools from the 
analysis phase of design and would see a cluster on a 
different plane. The nodes associated with building design 
stages are all in the highlighted plane as shown in Figure 2. 
Selecting Specifications shifts the plane to highlight the 

rrgure L. ~uucnrre r\oue 
Building Design Phase Considerations 
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Figure 3. Specifications Node 
Discipline Specific Intents 

nodes associated with the specifications of different 
disciplines as in Figure 3. and to dim all other planes. 
Planes may also be brought into focus by the computer 
when a need for the information is diagnosed. The three 
dimensional model shown here is not the user interface, but 
it represents the informational resources which the interface 
would make available to the user, a much simpler set of 
options to display than the usual design environment. New 
information would require that its discipline, stage, and 
behavior characteristic approach be specified in order to 
calculate its position in the model. 

‘Information ‘Relationships 

Different types of relationships within the model should be 
considered. Mathematical links may exist to compare the 
user data with architectural and engineering requirements. 
For example, design stages could be represented in 
sequential or linear order. Tree structured hierarchies, such 
as discipline specific intents, may have abstraction levels as 
well as numbered sets of members that may be sequenced. 
Distance between related nodes may be significant as well 
as angles between two pieces of information. These and 
other mathematical relationships must be studied and 
quantified if possible in order to construct a model that 
would make relationships between user needs and design 
knowledge understandable to a computer. 

Semantic relationships between data are also being codified. 
If the system could use the relationships implicit in the 

knowledge structure, it should be able to place new 
information in the model and extract user relationships from 
it later. The workstation would then be able to adapt to the 
needs of the user. 

Conclusions 

In our thesis, lfwe can identijj~ objects and the way they are 
constructed in a CALI system, then the computer can use 
the information to aakptively support individual designers, 
we have made the most progress with object recognition. 
Still there are many unanswered questions. If the network’s 
generalization can be made more consistent with human 
expectation... If user behavior patterns can be shown to 
indicate needs for performance support.,. If a knowledge 
model can be described into which tools, instruction, and 
information can be inserted and accessed... If... 
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