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Abstract 

The rapid and accurate identification of toxic 
chemicals is critical for saving lives in emergency 
situations. However, first-responder systems such as 
WISER typically require a large number of inputs 
before a chemical can be identified. To address this 
problem, we used networks to visualize and analyze 
the complex relationship between toxic chemicals 
and their symptoms. The results explain why current 
approaches require a large number of inputs and 
help to identify regularities related to the co-
occurrence of symptoms. This understanding 
provides implications for the design of future first-
responder systems, with the goal of rapidly 
identifying toxic chemicals in emergency situations. 

Introduction 

Toxic chemicals pose a universal threat to humans in 
situations ranging from bioterrorism to pesticide 
exposure. In emergency situations such as 9/11, there 
is a critical need for the rapid and accurate 
identification of toxic chemicals to reduce harm to 
large numbers of humans. 

To address this need, several organizations have 
constructed extensive evidence-based databases (e.g., 
Haz-Map1 available from the National Library of 
Medicine [NLM]) that relate toxic chemicals to acute 
symptoms and properties. Furthermore, there have 
been attempts to develop devices that make such data 
accessible to first-responders. For example, NLM has 
developed the Wireless Information System for 
Emergency Responders (WISER2), which accepts 
inputs such as acute symptoms. After each input, the 
system automatically constructs a database query, and 
responds with a set of chemicals that satisfy the 
current set of inputs. As more inputs are received, the 
set of chemicals narrows to enable the first-responder 
identify a toxic chemical. 

While such systems provide easy access to a 
database, how effective can they be for pinpointing a 

                                                           
1 http://hazmap.nlm.nih.gov/ 
2 http://wiser.nlm.nih.gov/ 

toxic chemical in an emergency situation? 
Toxicologists and public health experts have often 
reported that acute symptoms and/or properties of 
toxic chemicals are notoriously non-specific [2,4]. 
For example, acute dyspnea (difficulty breathing) is a 
symptom caused by a wide range of chemicals (not to 
mention other health conditions such as myocardial 
ischemia or asthma). Therefore, if a first responder 
enters such non-specific symptoms in WISER, the 
returned set of chemicals might be too large to be 
useful. Unfortunately little is known about the overall 
relationship of toxic chemicals and their symptoms to 
know whether current approaches are useful or if 
there might be more powerful ways to assist in the 
identification of toxic chemicals. 

We begin by describing how we estimated the 
number of symptoms it would take a WISER user to 
input into the system in order to identify a chemical. 
We then discuss how we used networks to visualize 
and analyze the relationship between chemicals and 
symptoms within the WISER database. The analysis 
rapidly revealed how symptoms relate to chemicals, 
and suggested approaches for designing first- 
responder systems that are better suited to the data. 
We conclude with a discussion of the network 
approach for analyzing data, and future research to 
help improve the rapid identification of toxic 
chemicals in emergency situations. 

Identifying Toxic Chemicals: How Many 
Symptoms Does it Take? 

The WISER database is one of the most extensive 
evidence-based collections that relate toxic chemicals 
to acute symptoms. We therefore analyzed this 
database to estimate how many symptoms it takes to 
identify a toxic chemical.  

The WISER database (version 2.45) consisted of 390 
toxic chemicals, 79 acute symptoms classified in 10 
categories (e.g., neurological), and 65 properties 
classified in 8 categories (e.g., odor). The inclusion of 
chemicals into the WISER database is determined 
annually by a team of chemists. Information about 
each selected chemical is extracted from Hazardous 
Substances Data Bank (HSDB) (which contains 
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extensive information about toxic chemicals targeted 
to researchers) and inputted into the WISER database 
(targeted to first-responders). 

Because of its target audience and context of intended 
use, the WISER database neither contains the 
probability of the association between a chemical and 
symptom, nor classes of chemicals.  

We estimated the number of chemicals returned by 
WISER for a particular number (N) of symptoms as 
follows.  (1) We randomly chose a chemical from the 
database, randomly selected N of its symptoms, and 
calculated the number of chemicals that matched all N 
symptoms. (2) The above step was repeated 200 
times, and used to derive the mean number of 
matching chemicals for N symptoms. Note that the 
selection of the symptoms, while random, was always 
based on an existing chemical. This “bootstrap 
sampling” from the distribution of symptoms captures 
the co-occurrences of symptoms and closely 
approximates how symptoms are selected in realistic 
situations. 

Figure 1 shows a plot that estimates the mean number 
of chemicals returned by WISER based on an 
increasing number of symptoms. As shown, the 
analysis estimates that it takes on average about 40 
symptoms to uniquely identify a chemical. While this 
method takes into consideration the co-occurrence of 
symptoms, it does not take into account real-world 
variables such as errors in symptom detection and 
input selection (and therefore is a conservative 
estimate). One could argue that a first-responder may 
be able to decide which chemicals are present in the 

emergency situation by inspecting a small set (e.g., 
10) and eliminating most based on contextual 
information or prior knowledge. However, even in 
such a scenario it still takes 14 symptoms to narrow 
the set to 10 chemicals. 

Given the large number of symptoms required to 
identify one (or even 10 chemicals), the current 
approach of constructing a simple database query to 
return all relevant chemicals does not appear to be 
practical for the rapid identification of a toxic 
chemical in emergencies. This motivated us to 
analyze why it takes so many symptoms to identify a 
chemical, and to discover regularities about the 
relationship between chemicals and symptoms that 
could be used to develop more effective search 
methods. 

Using Networks to Analyze the Relationship 
between Toxic Chemicals and Symptoms 

Standard statistical techniques such as distributions 
and cumulative frequencies collapse data in different 
ways to provide an overall understanding of the data. 
However, such techniques are not designed to 
represent which specific chemicals cause which 
specific symptoms, therefore potentially concealing 
important regularities in relationships. To understand 
such regularities between classes of information, 
networks are increasingly being used in a wide range 
of domains [3]. A network is a graph consisting of 
nodes and edges; nodes represent one or more types 
of entities (e.g., chemicals or symptoms), and edges 
between the nodes represent a specific relationship 
between the entities (e.g., a symptom is caused by a 
chemical). Figure 2 shows a bipartite network (where 
edges exist only between two different types of 
entities) of toxic chemicals and the symptoms they 
are known to cause.  

Networks have two advantages for analyzing complex 
relationships. (1) They represent a particular 
relationship between different nodes and therefore 
can reveal, for example, regularities in how specific 
chemicals are connected to specific symptoms. (2) 
They can be rapidly visualized and analyzed using a 
toolbox of network algorithms. For example, Figure 2 
shows how the Spring layout algorithm [1] helps to 
visualize chemicals and symptoms. The algorithm 
simulates placing springs between connected nodes, 
and a weakly repulsive force between nodes that are 
not connected. As shown, the result is that chemicals 
that have similar symptoms (e.g., DDT and 
methoxychlor in the upper left-hand corner of Figure 
2) are placed close to each other, and close to the 
symptoms that mention them. Given these 
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Figure 1. The estimated number of chemicals returned by 
WISER for different numbers of symptoms follows a 
power law. The analysis estimates that it takes 40 or more 
symptoms to uniquely identify a chemical.  
 



  

advantages, we explored whether networks could be 
used to understand the relationship between 
chemicals and symptoms. 

Analysis of the Relationship between Toxic 
Chemicals and Symptoms 

To understand the relationship between chemicals 
and symptoms, we performed two network analyses: 
(1) Analysis of the bipartite network shown in Figure 
2 to understand why it takes so many symptoms to 
identify a chemical. (2) Analysis of a one-mode 
projection of the above network to examine the co-
occurrence of symptoms. The analyses led to insights 
for the design of future first-responder systems.  

1. Bipartite network analysis: Why does it take 40 
symptoms to identify a chemical? 

The bipartite network shown in Figure 2 was 
constructed and analyzed using Pajek (version 1.17) a 
network visualization and analysis tool. As discussed 
earlier, the bipartite network shows the explicit 
relationship between the 390 chemicals and the 79 
symptoms they cause. Furthermore, besides showing 
the relationship between the chemicals and symptoms 
through the connecting edges, the size of a node is 
proportional to its degree (number of edges that 
connect to that node). Therefore, the larger a node, 
the more edges it shares with other nodes. 

The bipartite network visualization revealed two 
critical patterns related to symptoms and chemicals. 

(1) There are 59 commonly-occurring symptoms in 
the center of the network, while 20 rare symptoms are 
placed around the periphery. For example, Neuro: 
headache (a) is in the center of the network with 257 
edges each connected to a chemical. In contrast Ear: 
hearing loss (b) is on the far left periphery with only 
7 edges. Therefore, the mean degree of symptoms is 
large, and there is a large range in degrees 
(Mean=154.73, SD=106.97). 

(2) The chemicals form a ring around the 59 
symptoms in the center. Chemicals close to the inner 
set of symptoms cause many symptoms compared to 
chemicals in the outer ring. For example, the chemical 
Hydrochloric Acid (c) has 47 symptoms, whereas the 
chemical Ethylphenyldichlorosilane (d) has 17 
symptoms. Therefore, the mean degree of chemicals 
is small, and there is a small range in degrees when 
compared to symptoms (Mean=31.34, SD=10.53). 

The above network structure in which there are many 
chemicals (in the ring) with similar degree, and a 
relatively smaller number of symptoms (in the center) 
with high degree, results in a high overlap in the 
number of symptoms for most chemicals. This can be 
seen in the high density of edges3 (resulting in a gray 

                                                           
3 Edge density (number of actual edges / number of 
possible edges) = 0.396. This is high compared to the edge 
density of most large networks that have been analyzed, 
which typically ranges from almost zero to 0.1 [3].  (Edge 
density for a fully connected network = 1.0).  

 
 

Figure 2. A bipartite network (automatically generated by the Spring algorithm [1]) showing the relationship between 390 
chemicals (solid nodes) and 79 symptoms (white nodes). The size of the nodes is proportional to the edges that connect to them. 
Therefore common symptoms have large nodes, whereas rare symptoms have smaller nodes.  
 

a. Common symptom c. Chemical with many symptoms 

d. Chemical with few symptoms b. Rare symptom 

 
 

Figure 2. A bipartite network (automatically generated by the Spring algorithm [1]) showing the relationship between 390 



  

mass of indistinguishable edges) between the 
chemicals in the ring, and the symptoms in the center.  

The above result provides an explanation for the 
power law curve in Figure 1. The curve has its shape 
because after the first few symptoms have helped to 
rapidly distinguish between chemicals that have 
widely different symptoms (leading to the steep initial 
drop), there are fewer and fewer symptoms left to 
discriminate between many chemicals with highly 
overlapping symptoms (leading to the long tail). If 
however, the overlap between chemicals was not 
high, one could expect the curve to drop rapidly, but 
have a shorter tail. 

While the bipartite network revealed why it takes so 
many symptoms to identify a chemical, it concealed 
the specific co-occurrence pattern between the 
symptoms. To reveal the co-occurrence between 
symptoms, we constructed a one-mode projection of 
the bipartite network to analyze patterns in the co-
occurrence of symptoms. 

2. One-mode projection analysis: How do symptoms 
co-occur? 

As large networks with many edges can get visually 
complex, there exist many methods to transform the 
data in order to uncover hidden relationships. One 
such method is the one-mode projection of a network, 
which in our case removes all chemical nodes and 
adds edges between symptom nodes that are caused 
by the same chemical. For example, if the chemical 
DDT causes edema and vomiting, then the one-mode 

projection will remove the DDT node, and add an 
edge between the edema and vomiting nodes. 
Furthermore, if these two symptoms are connected to 
another chemical, the weight of the edge between 
them increases. The edge weight therefore represents 
how many times a pair of symptoms co-occurs. The 
resulting Spring layout places symptom nodes close 
to each other if they have high co-occurrence, and 
spaces them far apart if they have low co-occurrence.  

Figure 3 shows a one-mode projection of the network 
in Figure 2. The network reveals two regularities. (1) 
There is a densely connected set of high degree 
symptom nodes in the center that frequently co-occur 
with each other (the edges are so dense that they 
cannot be seen individually). This set contains 57 of 
the 59 symptoms that were in the core of Figure 2. (2) 
Rare symptoms in the periphery of the network tend 
to co-occur with the common symptoms in the center, 
but infrequently with other rare symptoms4.  

Discussion 

The bipartite network and the one-mode projection 
together provided answers for two questions. (1) Why 
does it take 40 symptoms to identify a chemical? The 
analysis revealed that this is because of the high 
overlap of symptoms between most chemicals. (2) 
How do symptoms co-occur? The analysis revealed 

                                                           
4 The network therefore exhibits almost no degree 
correlation [3] (Pearson’s correlation = 0.008) between 
pairs of nodes, when taking into account the edge weights. 

 
Figure 3. A one-mode projection of the network in Figure 2 showing regularities in the co-occurrence of 79 symptoms. 
 

1. Common symptoms frequently co-occur 
with other common symptoms 

2. Rare symptoms tend to co-occur with common 
symptoms, but infrequently with other rare symptoms 



  

that a core set of common symptoms are densely 
connected to each other, and rare symptoms co-occur 
with common symptoms but infrequently with each 
other.  

The above observations do not appear to be unique to 
WISER. Our preliminary analysis of chemicals and 
health conditions in other datasets (e.g., Collaborative 
on Health and the Environment Toxicant & Disease 
Database), suggest that they have network properties 
similar to WISER. We therefore explored 
implications of our network analysis for the design of 
future systems to help search such datasets. 

Implications for Designing First-Responder 
Systems 

The results of our network analyses suggested a 
multi-input approach to help first-responders to 
rapidly identify chemicals. This approach will 
provide three different ways to select a symptom:  

1. Select from a static set of symptoms presented in a 
hierarchy (as is currently provided by WISER). This 
approach is suitable if the user knows the exact name 
of a symptom, and can rapidly identify its location in 
the hierarchy. However, as our analysis has shown, 
selecting symptoms which are then converted into a 
database query is not the most efficient method to 
identify a chemical. 

2. Select from a dynamically generated list of 
symptoms (using a dynamic binary search tree [BST] 
algorithm) ranked by the ability of a symptom to 
eliminate close to half of the remaining chemicals. 
This approach is suitable if the user wishes to rapidly 
narrow the set of chemicals, based on suggestions 
from the system. Our initial experiments using a BST 
suggest that it can substantially reduce the number of 
symptoms to identify a chemical. This might be 
because of the confluence of network properties such 
as low degree correlation and high edge density, a 
hypothesis that needs to be tested in future research. 

3. Select from a dynamically generated list of 
symptoms ranked by co-occurrence of already 
selected symptoms. This approach can be used to 
check which symptoms should be co-occurring with 
the ones that have been selected, and was suggested 
by the co-occurrence patterns of symptoms. Selection 
from a list of co-occurring symptoms is not designed 
to reduce the number of symptoms, but rather to 
provide useful feedback for the first-responder. 

Future research should determine whether the above 
multi-input approach (each with different trade-offs) 
provides improvements over the current WISER 
approach, and if it can be useful for other datasets. 

Summary and Future Research 

Given the critical importance of rapidly identifying 
toxic chemicals by first-responders, we investigated 
the relationship of chemicals and their symptoms in 
two steps. First, we analyzed how many symptoms on 
average it would take to identify a unique chemical 
using the current WISER system developed by NLM. 
The analysis revealed a conservative estimate of 40 or 
more chemicals. Because such a high number 
appeared impractical in emergencies, in our second 
step, we analyzed the relationship between chemicals 
and symptoms using networks. The analysis revealed 
a high overlap in the symptoms between chemicals, 
and co-occurrence patterns in the symptoms. These 
results led to insights about how to design future 
systems that could help first-responders rapidly 
identify toxic chemicals. 

The network analysis tools we have demonstrated are 
only a small subset of those available. In our future 
research, we will apply a broader range of network 
analysis methods to WISER and other public health 
databases. Furthermore, the WISER database has 
other chemical properties, such as color and odor, 
which no doubt figure in the identification of 
chemicals and therefore will be a focus of our 
attention in future analysis and design. The use of 
networks, as demonstrated in this preliminary study, 
should therefore lead to new regularities about the 
data that can be exploited, with the goal of helping in 
the rapid identification of chemicals and other 
determinants of acute and chronic symptoms. 

Acknowledgements 

We thank Bernstam, E., Ganesan, A., Janssen, S., 
Lechman, D., Schettler, T., and Varaprath. S. for their 
feedback and assistance in interpreting the WISER data, 
and Adamic, L. for teaching us how to analyze 
networks. Our sincere thanks to Mashayekhi, B. and 
Wexler, P. from NLM who graciously provided us 
access to the WISER database. 

References 

1. Freeman, L. Visualizing Social Networks, JoSS, 1,1 
(2001). 

2. MMWR.  Recognition of illness associated with 
exposure to chemical agents—United States. Morb. 
Mortal. Wkly. Rep. 52, (2003) 938-940. 

3. Newman, M. The structure and function of 
complex networks. SIAM Review, 45(2), (2003), 
167-256. 

4. Schier, J.G., Rogers, H.S., Patel, M.M., Rubin, 
C.A., Belson, M.G. Strategies for recognizing acute 
chemical-associated foodborne illness. Military 
Medicine 171, (2006) 1174-1180. 


