
5.1 Introduction

A dominant goal of the Human-Computer Interaction (HCI) field has been to design
facile interfaces that reduce the time to learn computer applications. This approach
was expected to enable users to quickly perform simple tasks with the implicit
assumption that they would refine their skills through experience. However, several
longitudinal and real world studies on the use of complex computer systems such
as UNIX (Doane et al. 1990), word processors (Rosson 1983), spreadsheets (Nilsen
et al. 1993), and computer-aided drafting (Bhavnani et al. 1996) have shown that
despite experience, many users with basic command knowledge do not progress to
an efficient use of applications. These studies suggest that knowledge of tasks, and
knowledge of tools on their own are insufficient to make users more efficient.

In this paper we argue that, in addition to task and tool knowledge, users must also
learn an intermediate layer of knowledge that lies between the layers of tasks and
tools. This can be illustrated in even very simple tasks performed with simple tools.
Consider the task of driving in a nail with a hammer. The task description (drive in a
nail) together with the design of the hammer (designed to afford gripping), leads a
user to grasp the handle, hold the nail in position, and hit it with repeated blows.
While this method can achieve the goal, it often leads to bent or crooked nails, or fin-
gers being accidentally hit with the hammer. In contrast, master craftsmen know that
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a quicker way to avoid these problems is (1) tap the nail to guarantee its proper angle
of entry and to hold it in place, (2) remove the fingers holding the nail, and (3) drive
in the nail with heavier blows. The knowledge of this efficient method is neither
expressed in the task description nor expressed by the design of the handle. Instead,
this knowledge lies between the layers of tasks and tools. This intermediate layer of
knowledge has to be learned, and the cost of learning is amortized over subsequent
use of the hammer to drive in nails.

This paper focuses on efficient strategies to use computer applications that lie in
the intermediate layers of knowledge. We will show that these strategies are (1) effi-
cient because they exploit specific capabilities provided by computers, (2) difficult to
acquire from tool and task knowledge alone, and (3) general in nature and therefore
have wide applicability.

Section 5.2 will introduce the preceeding three concepts in the context of aggre-
gation strategies that exploit the iterative power of computer applications. Section 5.3
will provide empirical evidence that these strategies are not spontaneously acquired
by experienced users but, if used, can reduce task time and errors. Section 5.4 will
discuss possible explanations for why such strategies are not easily learned or used.
Section 5.5 will expand the notion of strategies beyond those to perform iterative
tasks and will briefly discuss our experience of using them to design training. In con-
clusion, we present some concepts that could lead to a general framework to system-
atically identify efficient strategies at different levels of generality. The goal is to help
designers and trainers identify strategies that make users more efficient in the use of
complex computer applications.

5.2 Strategies in the Intermediate Layers 
of Knowledge

Complex computer applications such as UNIX, CAD, word processors, and spread-
sheets often provide more than one way to perform a given task. Consider the task of
drawing three identical arched windows in a CAD system. As shown in Figure 5.1A,
one way to perform this task is to draw all the arcs across the windows, followed by
drawing all the vertical lines, followed by drawing all the horizontal lines. An alter-
nate way to do the same task (as shown in Figure 5.1B) is to draw all the elements
of the first shape (Detail), group these elements (Aggregate), and then make multiple
copies of the aggregate to create the other shapes (Manipulate). Both these methods
allow a user to complete the task. We call such nonobligatory and goal-directed meth-
ods strategies. The Sequence-by-Operation and Detail-Aggregate-Manipulate methods
just described are prime examples of strategies that can be used in complex computer
systems.
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5.2.1 Strategies That Exploit the Iterative Power of Computers

The advantage of the Sequence-by-Operation strategy is that by drawing all arcs,
followed by drawing all lines, the user reduces switching between tools. Although
the Sequence-by-Operation strategy reduces tool switching, the user still has to per-
form the iterative task of creating each of the elements. In contrast, the advantage of
the Detail-Aggregate-Manipulate strategy is that the user draws the elements of only
one window, and the computer performs the iterative task of creating copies of the
other windows when given their locations. However, a critical part of this strategy is
that the user must make sure that all the elements in the original are complete and
error-free before they are grouped and copied. This avoids having to make corre-
sponding changes in each copy.

The Detail-Aggregate-Manipulate strategy exploits the iterative power of comput-
ers through the capability of aggregation provided by most computer applications.
For example, most CAD systems, word processors, and spreadsheets allow users to
aggregate groups of objects by dragging the cursor over a selection and then applying
to this aggregate manipulations or modifications such as copy and delete. By group-
ing before applying operations, the user exploits the iterative power of the computer
because the computer performs the iteration over all the elements in the group. This

Strategies in the Intermediate Layers of Knowledge 99

A. Sequence-by-Operation Strategy

Detail

1. Draw Arc 2. Draw Lines 3. Group Lines 4. Copy Group

1. Draw Arcs 2. Draw Vert. Lines 3. Draw Horiz. Lines

Aggregate Manipulate

B. Detail-Aggregate-Manipulate Strategy

FIGURE 5.1 Two strategies to perform the task of drawing three windows in a CAD
system 
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notion is captured in the basic strategy Aggregate-Manipulate/Modify of which the
Detail-Aggregate-Manipulate is just one of several variations. We refer to all of these
strategies as aggregation strategies (Bhavnani 1998). We will show in Section 5.3
that aggregation strategies are in fact much more efficient in terms of time and errors
when compared to Sequence-by-Operation.

Figure 5.2 shows decompositions of the Sequence-by-Operation and Detail-
Aggregate-Manipulate strategies for the draw three windows task. These decomposi-
tions reveal that the strategies exist in an intermediate layer of knowledge lying
between the task description (at the top of the decomposition) and the commands to
complete the task (at the bottom). The location of these strategies in the intermediate
layers of knowledge profoundly affects their learnability and generalizeability.

5.2.2 Acquiring Strategies in the Intermediate Layers 
of Knowledge

Because strategies such as Detail-Aggregate-Manipulate reside in the intermediate
layers of knowledge above commands, they are difficult to infer from command
knowledge. For example, in the task to draw three windows, knowledge of how to
use commands such as Draw Line and Group Elements in a CAD system is not suffi-
cient to know that it is important to complete all the elements of the first window
before grouping and copying. This has led to the general observation that good inter-
face design on its own cannot lead to efficient use (Bhavnani and John 1997). Fur-
thermore, when different strategies can accomplish the same task, the task itself also
cannot express this strategic knowledge. This knowledge, therefore, has to be learned
by various processes such as through trial and error or through explicit instruction. In
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FIGURE 5.2 Decompositions of the task to draw three windows. The Sequence-by-
Operation and Detail-Aggregate-Manipulate strategies lie in the intermediate layers
of knowledge below the task, and above the commands.



fact, we will show in Section 5.3 that, despite mastery of basic commands, many
users do not spontaneously acquire strategic knowledge to use commands efficiently.

There is a cost to learning strategies such as Detail-Aggregate-Manipulate. Users
must learn to recognize opportunities to operate on groups of objects in order to
exploit iteration and then know a sequence of actions to execute the strategy. As
shown in Figure 5.2, the aggregation strategy requires a very different task decom-
position compared to strategies that operate on single elements. However, this
learning cost is amortized over the efficiency gains over many invocations of the
strategy. This is similar to learning to use any new device efficiently whether it is
a hammer or a computer application. Furthermore, we have empirical evidence to
show that, when given appropriate instruction, users can easily learn to recognize
and use strategies such as Detail-Aggregate-Manipulate (Bhavnani et al. 1999).
After a few weeks of class instruction and practice, architectural graduate students
learned to decompose complex architectural drawings by using aggregation strate-
gies, in addition to learning commands. One important reason why these strategies
were learned easily is that repeated elements are intrinsic to architectural designs
(Flemming et al. 1997). Windows, doors, columns, and even entire facades are re-
peated or mirrored to create designs, and it is typical for an architect to exploit
these repetitions while creating drawings. Aggregation strategies such as Detail-
Aggregate-Manipulate, therefore, exploit how architects already think about objects
in their designs. These results are not unique to teaching CAD strategies to archi-
tectural graduate students. Preliminary results from our ongoing research show that
strategies can be taught in a short amount of time to a diverse population of fresh-
men students (Bhavnani et al. 2001).

5.2.3 Generality of Strategies in the Intermediate Layers
of Knowledge

Because strategies such as Detail-Aggregate-Manipulate reside in the layers above the
command layer, they are not dependent on specific implementations of commands in
an application. For example, the step Aggregate in the Detail-Aggregate-Manipulate
strategy can be executed by many different commands in different applications. Aggre-
gation strategies, therefore, are generally applicable across computer applications. Fig-
ure 5.3 shows three aggregation strategies and how they generalize across computer
applications. The first row shows how the Detail-Aggregate-Manipulate strategy can be
used in CAD (as already discussed in Figure 5.1B, and in Bhavnani and John 1996) and
in other applications. In a spreadsheet application it can be used to create a row of data,
aggregate it into a range, and operate on the range using a formula. In a word processor
the strategy could be used to copy paragraphs of text across files.

Next, the Aggregate-ModifyAll-Modify Exception strategy allows a user to exploit
aggregation to handle exceptions. For example, if all except one of a group of ele-
ments need to share an attribute, it is better to modify all of them and then change the
exception, instead of modifying each on its own. The Aggregate-ModifyAll-Modify
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FIGURE 5.3 Three strategies of aggregation and how they generalize across com-
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Exception strategy can also be used to modify the width of columns with an exception,
as well as in a word processor to handle exceptions during the font modification of a
paragraph.

Finally, the Locate-Aggregate-Manipulate-Modify strategy in CAD can be used
to exploit similarity in a drawing by copying a figure that is already drawn and modi-
fying it. In spreadsheets, this strategy could be used to copy and modify complex sets
of formulae. The formulae shown contain absolute and relative referencing of cells
that can be modified and reused in another location. In word processors, the strategy
could be used to copy and modify a section containing complex formatting.

To summarize, this section described the existence of a set of aggregation strategies
that reside in the intermediate layers of knowledge. We argued that these aggregation
strategies are (1) efficient because they exploit the iterative power of computers, (2) dif-
ficult to acquire spontaneously from knowledge of commands or tasks, and (3) general-
izeable across computer applications. The next section will analyze the first two points
in more detail. First, we will describe a GOMS analysis of a real world task to precisely
understand how aggregation strategies can affect performance. Second, we will provide
empirical evidence from other studies to show that aggregation strategies are not spon-
taneously acquired by even experienced users.

5.3 Evidence for the Effects of Aggregation
Strategies on Performance

To understand how strategies affect performance, we present a real world task per-
formed by a CAD user during an ethnographic study (Bhavnani et al. 1996). One of
the users from the study, “L1,” had more than two years of experience in using a
CAD system called MicroStation™ (version 4). His task was to edit a CAD drawing
of ceiling panels that overlapped air-condition vents. The task of editing the panels
overlapping these vents will be referred to as the panel clean-up task. This task is
typical of drawing tasks performed by architects during the detail drawing stage of a
building design. We observed nine other users who performed similar drawing tasks
in our study.

5.3.1 The Panel Clean-up Task

As vents go vertically through ceiling panels, they both cannot occupy the same
space. Therefore, as shown in Figure 5.4, L1 had the task of removing all the line
segments (representing ceiling panels) that overlapped the rectangles (representing
air-condition vents). The vents and panels were defined in two different drawing
files that were simultaneously displayed on the screen to reveal their overlap. This
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enabled L1 to modify the panels without affecting the vents. The file had 21 such
vents, all of them similar to those shown in Figure 5.4. This meant that L1 had to
modify numerous lines that overlapped the vents.

5.3.2 How L1 Performed the Panel Clean-up Task

L1 zoomed in and panned a single window in order to view sets of vents to work on.
Figure 5.4 represents a typical example of such a window setup, with 3 of the 21
vents displayed. As shown in Figure 5.5, L1 first cut all the panel lines that over-
lapped the 3 vents by using the Delete Part of Element tool (which deletes a portion
of a given line between two specified points). He then cleaned up all the cut lines to
the edges of the vent using the Extend to Intersection tool (which extends or shortens
a line to the intersection point of any other line).

By sequencing all the cut operations across the vents, followed by all the cleanup
operations, L1 is effectively using the Sequence-by-Operation strategy described in
Section 5.2. This strategy reduces tool switches between the cutting and cleaning
operations but requires the user to perform the iterative task. Furthermore, the task
requires high precision, since L1 has to select each panel line in order to cut and
extend it to the edge of the vent.

Because of the highly repetitious and precise nature of the task, L1 committed
several errors of omission and commission. As shown in Figure 5.6, he did not notice
that two panel lines located very close to the boundary of the upper right-hand vent
overlapped the vent. He had to return to them after the rest of the lines had been cut
and extended. Second, he accidentally selected a panel line just above the lower
right-hand vent instead of the actual vent-line, thereby extending a panel-line to the
wrong place. This error went undetected, and the drawing was inaccurate after heN
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FIGURE 5.4 The panel clean-up task requires all ceiling panel lines that overlap
the air-condition vents to be modified. The drawings are schematic and not to scale. 

(© 1998 ACM, Inc., Included here by permission.)



completed the task. Finally, he committed five slips in the selection of panel lines,
which had to be repeatedly reselected in order to get exactly the line he wanted.
Despite these difficulties, L1 consistently used this time-consuming and error-prone
strategy to clean up all 21 vents. In the process, he committed several more omission
and commission errors and took approximately 30 minutes to complete the entire task.
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FIGURE 5.5 The method used by L1 to perform the panel clean-up task. 
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Figure 5.6 Errors in the panel clean-up task leading to inefficiencies and an
inaccurate drawing. The figure shows the drawing after L1 completed the task.



To precisely understand the nature of these inefficiencies in terms of time and fre-
quency of errors, the data was transcribed at the keystroke level and quantitatively
analyzed. As shown in Figure 5.7, L1 took more than two minutes to complete the
fairly simple task of deleting 11 very similar line segments (these numbers relate
to the cleanup of 3 vents—the total task, as described earlier involved the cleanup
of 21 vents). Furthermore, he spent 20 seconds to commit and recover from errors,
which formed 16 percent of the total task time.

Many of these errors could have been avoided if L1 had used the Aggregate-Modify
strategy to delegate to the computer the repetitious task of cutting and cleaning many
lines. For instance, L1 could have used the Place Fence1 command (an aggregation
command) with a Snap mouse option (where the cursor jumps to the closest intersec-
tion) to accurately place a fence over the vent and then delete all the panel lines in
one step. By using this procedure, all element segments within the fence, regardless
of how visually close they were to the vent boundary, would have been selected. The
errors related to precise line selection and of overlooking lines that had to be cut and
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1Ethnographic notes revealed that L1 had used the Fence command several times in other tasks to modify
groups of objects. The missed opportunity to use the Aggregate-Modify strategy was therefore not due to
the lack of knowledge of this command.
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extended and could therefore have been avoided. Furthermore, because the iterative
task of cleaning up each line would be delegated to the computer, it appears that the
strategy could have reduced the time to perform the task.

5.3.3 Cognitive Analysis of the Panel Clean-up Task

To understand the differences between the Sequence-by-Operation and Aggregate-
Modify strategies to perform the panel clean-up task, we first constructed hierarchical
goal decompositions of each approach. Figure 5.8 shows a decomposition of the task as
performed by L1 using the Sequence-by-Operation strategy. As shown, he used the
Delete Part of Element command to cut each line across the three vents and the Extend
to Intersection command to extend each of the cut lines to the boundary of the appropri-
ate vent. The figure shows how L1’s strategy choice resulted in many low-level mouse
inputs. Figure 5.9 shows a task decomposition of how L1 could have performed the
same task using multiple instances of the Aggregate-Modify strategy. When contrasted
to the real-world task decomposition, there is a reduction in the number of low-level
inputs due to the delegation of iteration to the computer.

To estimate the effect of this reduction in low-level inputs on performance, we
developed GOMS (Card et al. 1983) models of both approaches. As shown in Figure
5.10, the model with the Aggregate-Modify strategy predicted a reduction in time of
71 percent. Furthermore, as shown in Figure 5.11, the frequencies of inputs were dif-
ferent between the two models. While there is an increase in the number of command
selections (as the Fence and Delete operations have to be applied to three vents),
there is a reduction in the number of precision inputs to select lines and intersections,
as well as a reduction in the number of overall mouse clicks (command selections,
accepts, tentative snaps). The large number of precision inputs may explain why L1
committed many errors, which added 20 seconds to the overall time.
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FIGURE 5.9 A GOMS decomposition of the 3-vent panel clean-up task using the
Aggregate-Modify strategy to clean-up each vent.
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The analysis of the panel clean-up task reveals many issues related to strategy use.
First, despite experience and knowledge of the Fence command, L1 did not use an
efficient strategy to perform a highly repetitious task requiring high precision. Sec-
ond, despite making many errors, L1 was persistent in using his strategy over the
course of the entire task. Third, the use of an aggregation strategy could have reduced
time and errors, and could have led to a more accurate product.

5.3.4 Inefficient Use Reported in Other Studies

The preceding results are not unique to L1 performing the panel clean-up task. Our
analysis of nine other experienced CAD users in the same office revealed a similar pat-
tern of behavior (Bhavnani 1998). Users could have saved between 40 to 75 percent of
their time to complete their tasks if they had used various forms of the aggregation
strategies as shown in Figure 5.3. These results are also not unique to our study of CAD
usage. Lang et al. (1991) report an experienced user who missed an opportunity to use
the Detail-Aggregate-Manipulate strategy in a CAD task. When the task was redone
after a brief discussion with an expert CAD user, it was completed in 67.5 percent less
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time. This study provides more evidence that although aggregation strategies need to be
explicitly taught, they are easily learned through instruction and successfully executed.

The preceding results generalize even outside the domain of CAD. Nilsen et al.
(1993) studied the development of 26 graduate business students learning how to use
Lotus 1-2-3™ over a period of 16 months. Their results showed that even after 16
months of using the application in enrolled courses, the students did not use efficient
strategies. For example, a task required five columns to be set to a particular width X
and one to be set to a different width Y. The efficient method to perform this task
involves two commands: one to set all the columns to width X and one to set the width
of the exception to Y. Only 2 of the 14 students used this method. The other 12 stu-
dents changed the width of each column individually. The authors make the observa-
tion that experience does not guarantee that users change their strategies to more
efficient ones. It is important to note that the efficient strategy suggested by the authors
is in fact the Aggregate-ModifyAll-ModifyException strategy described in Figure 5.3.

In a different study on spreadsheet use, Cragg and King (1993) have shown that
55 percent of users did not use the range option, an aggregation command to group
and name many cells in Microsoft Excel. Once a range is created and named, it can
be manipulated in other formulae merely by reference to the range name. This is
in fact an instantiation of the Detail-Aggregate-Manipulate strategy in the use of a
spreadsheet application, also shown in Figure 5.3.

This cognitive analysis of the panel clean-up task, together with the other empir-
ical studies, suggest two basic points. First, despite experience, users do not easily
acquire aggregation strategies to perform iterative tasks. The users tend to master the
use of commands but do not appear to progress toward using them in an efficient way
to complete complex tasks. Second, when used, aggregation strategies can in fact
reduce time and errors and lead to a more accurate product.

While the GOMS analyses provide a rigorous account of the observed behavior, in
addition to the improvements that could be achieved through the use of aggregation
strategies, it cannot explain how the knowledge and behavior of the users got to be
that way. The next section will explore possible explanations of why many users do
not acquire and use efficient strategies.

5.4 Possible Explanations for Inefficient
Computer Usage

Why don’t experienced users learn and use efficient strategies, and why do these
inefficient behaviors persist? This section will present possible explanations under
two broad categories: (1) efficient strategies not known and (2) efficient strategies
known but not used. These explanations will be derived from empirical studies done
on computer applications where efficient strategies were not used, from both exist-
ing theories of knowledge acquisition, and from emerging theories of strategy choiceN
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and usage. Many of our explanations come directly from our experience studying
CAD usage in detail. However, these results generalize to other complex computer
applications. The goal of discussing these explanations is to identify approaches to
improve the use of complex computer applications.

5.4.1 Efficient Strategies Not Known

The simplest explanation for the inefficient use of computer systems is that some
users, despite many years of computer experience, had not yet acquired knowledge
of efficient strategies. While it is well known that the acquisition of expertise is time-
consuming, the following reasons explore why users of complex systems persist in
not acquiring efficient strategies.

5.4.1.1 Efficient Strategies Have Not Been Made Explicit

One possible reason that efficient strategies are not known is that they are neither
explicitly provided in instructional manuals nor explicitly taught in vendor-provided
training. In a systematic search of libraries, publishers, and CAD vendors, we found
that only 2 out of 26 books (randomly selected from the entire population of 49
books) went beyond the description of commands to perform simple tasks. One of
the books (Crosley 1988) describes the importance of “thinking CAD.” He states,
“It’s possible to use computer-aided drawing without really taking advantage of its
capabilities. Even some experienced CAD users have simply transferred all their
manual-drawing habits over to the computer” (p. 6). Later he adds, “The advantages
of CAD are not free; they come at the expense of having to actually design the draw-
ing” (p. 11). While this author stresses the importance of rethinking the drawing
process, he does not present explicit strategies to “design the drawing,” leaving the
readers to discover and implement the strategies themselves.

5.4.1.2 Weak Causal Relationship between Method and Quality of Product

While the absence of strategic knowledge in books and manuals makes it difficult for
users to obtain it directly, it cannot explain why CAD users do not discover the strate-
gies while using their systems. An analysis of efficient manual drafting strategies
provided some clues as to why strategy discovery in computer usage may be difficult.
For instance, a well-known manual drafting strategy to prevent lines getting smudged
and drawings getting dirty is to always “begin work at the upper left corner of the
sheet of drafting paper and to finish at the lower right corner of the sheet” (Beakley
et al. 1984, p. 47). In most cases, if such strategies are not followed, it is very hard to
produce a quality drawing. A wrong strategy invariably leads to a visibly low-quality
drawing. Because there is such a strong causal relationship between technique and
quality, and because the flaws are publicly visible, drafters tend to be highly moti-
vated to improve their technique.

This strong causal relationship between technique and drawing quality is absent
in CAD. The drawing produced by Ll, when printed, is clean. Therefore, there is no
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visible indication that the drawing was produced by an inefficient strategy. As the
flaws in the technique are not publicly visible, the users neither notice their ineffi-
cient techniques nor have motivation to change them. This phenomenon has also
been observed in controlled studies. For example, Singley and Anderson (1989) note
that “productions which produce clearly inappropriate actions contribute to poor ini-
tial performance on a transfer task but are quickly weeded out. Productions which
produce actions which are merely nonoptimal, however, are more difficult to detect
and persist for longer periods” (p. 137).2

5.4.1.3 Office Culture Not Conducive to Learning

The preceding explanations focus on an individual’s interaction with a CAD system.
However, real-world CAD usage typically occurs in a group environment where infor-
mation is exchanged. This exchange can strongly affect the usage of a CAD system.
For example, Gantt and Nardi (1992) recommend that CAD managers encourage
“gurus” to develop expert knowledge and to act as disseminators of this information
within an organization. Majchrzak et al. (1987) provide several recommendations:
Managers should be well trained in the technology; CAD training should focus on
presenting a general education in CAD concepts, thereby moving away from teaching
only commands; and users should have biweekly meetings where they can discuss
specific problems and keep abreast of changes.

However, as described in our ethnographic study of an architectural office (Bhav-
nani et al. 1996), such ideal conditions do not always occur in realistic office settings.
The manager of the architectural section we observed was not trained in the use of
CAD and did not use it to create drawings. Furthermore, training was perceived as a
once-in-a-lifetime requirement, and the users were not encouraged to get follow-up
training. As a result, the system had undergone many changes that were unknown to
the users.

The lack of training was exacerbated by the absence of any regular discussions on
system usage. Most discussions were confined to issues concerning design, and
architects rarely discussed drawing strategies or looked over each other’s shoulders
during the drawing process. Additionally, there was an internal rule that prevented
users from contacting the vendor phone support directly for help. The questions had
to be routed through a system coordinator, who did not have a clear understanding of
the problems faced by the architectural group and therefore was ineffectual in solv-
ing problems. These conditions severely inhibited the flow of CAD-related informa-
tion within the group.

In cases when drawings are shared and modified within a group working on the
same project, a poorly constructed CAD drawing can cause irritations and problems
to other users. For example, a user might expect to move a shape by grabbing a side
and, when that side moves away from the rest of the shape, realize the shape was
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called productions.



constructed with single lines instead of as a polygon. In such cases, the drawing strat-
egy becomes public and therefore presents opportunities for critical appraisal of inef-
ficiencies. However, if all the users in a group share a flawed mental model of the
CAD system, the inefficient strategy can remain undetected despite shared drawings.
This was exactly the situation at the office where our data were collected. Therefore,
the realities and complications in realistic office environments can make the dissemi-
nation of CAD-related information difficult and unreliable.

5.4.2 Efficient Strategies Known But Not Used

Another possible reason for the inefficient use of complex computer systems is that
users know efficient strategies but choose not to use them. The following are some of
the possible reasons and our evidence for and against those reasons.

5.4.2.1 Efficiency Not Valued

There is a possibility that users may know aggregation strategies but decide not to
use them because they do not value the benefits they provide. That is, the users nei-
ther care for the savings in time nor for the accuracy that the strategies could 
produce.

This possibility is in fact not supported by our ethnographic data. Users explicitly
stated the importance of saving time while performing drafting tasks. For example, in
a discussion on advanced commands during the ethnographic study (Bhavnani et al.
1996), an architect explicitly stated, “Anything that saves time is of value to us.” This
observation is further substantiated by current research in the acquisition of strategic
knowledge. For example, the adaptive strategy choice model (ASCM) developed by
Siegler and Shipley (1995) predicts how children select strategies to solve problems
in arithmetic. One of the predictions provided by ASCM, verified through empirical
analysis, states that “when children can choose among alternative ways of executing
a given strategy, they should increasingly choose the ones that are fastest and that
yield the most accurate results” (Lemaire and Siegler 1995, p. 86). Although these
predictions have to be verified with adults using computer applications, the aggrega-
tion strategies fit exactly into this category of strategy as they are predicted to be
faster than the ones the users had and to produce more accurate results.

5.4.2.2 Strategies Not Really Efficient

It can be argued that the strategies we have identified as efficient require additional
cognitive costs that are not taken into account in our GOMS models. If this were true,
the strategies may not really be efficient, and users may therefore choose not to use
them. While this argument may be potentially true for more complex tasks, we do not
believe it to be true for the tasks we observed and modeled.

The tasks we observed and modeled were so simple that they did not involve time-
consuming problem-solving or planning. For example, the panel cleanup task was
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simple and regular. There were many vents, all the vents had to be clear of ceiling
panel lines, and the architect knew this at the start of the task. That was the only
knowledge necessary to invoke the Aggregate-Modify strategy. There was nothing
additional to figure out or plan. The user needed only to select a strategy and execute
it. Such tasks are well modeled in the GOMS framework. In our models (Figure 5.8
and 5.9), the small amounts of perception and cognition needed to recognize the task
situation are subsumed in the selection rules to pick the strategy and in the traversal
of the goal hierarchy. Only perceptual operators (locate, verify), cognitive operators
(decide), and motor operators (point-to, click) combine to give the time predictions
because the theory and practice of GOMS does not assign time to selection rules or
goal manipulation.3 Therefore, we believe our models reflect any cognitive costs
associated with using the strategies we identified, and they truly are efficient during
the performance of simple tasks.

More generally, for users skilled in their task domain, the recognition of features
like repetition, symmetry, and similarity are likely to be central to their task (for
example, see Flemming et al. 1997 for a discussion of such domain knowledge
known by architects). Therefore, users who are skilled in their domains need only
learn the connection between these task concepts and the strategies that exploit them
(see Section 5.4.1 for a discussion of learning costs) in order to invoke this knowl-
edge in simple task situations.

However, there exist more complex tasks that may require problem solving and
planning to recognize a structure and exploit it with efficient strategies. For example,
given a cathedral with recursive symmetries, an architect, despite his or her domain
experience, must first look for the recursive structure in the task, decompose it to the
lowest level of symmetry, and then build up the drawing through the successive levels
of symmetry using an aggregation strategy. This is what Crosley (1988) meant by
“design the drawing” (p. 11). The more complex the structure in a drawing, the more
mental effort is required to identify how best to decompose the drawing in order to
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3It is true that adding each new strategy to a user’s knowledge necessarily also adds at least one new selec-
tion rule to choose that strategy in the appropriate task situation. However, many cognitive modeling theo-
ries with good fit to empirical data assume no extra performance cost to having more selection rules that
are not applicable to the task situation. For instance, GOMS (Card et al. 1983), Soar (Newell 1990), and
ACT-R (Anderson and Lebiere 1998) all have this characteristic. Although some empirical evidence exists
for the mere existence of different methods increasing decision time for skilled users (Olson and Olson
1990), it is small compared to the savings in execution time these strategies would provide.

It is also true that task decompositions using strategies often have slightly deeper goal-stacks than sim-
pler strategies. For example, the Aggregate-Modify strategy for the 3-vent panel cleanup task (Figure 5.9)
has a deeper goal stack than the Sequence-by-Operation strategy for the same task (Figure 5.8). Whether a
deeper goal stack adds to performance time for skilled use is an open research question (John and Kieras
1996). Card et al. (1983) tried both approaches and found no additional predictive power from assigning
time to goal decomposition and therefore left it out of the original GOMS formulation for simplicity’s
sake. On the other hand, Kieras (1997) included 100 msec per push or pop of a goal in GLEAN, and both
Soar and ACT-R also include time on the order of 50–100 msec. Again, since the difference in depth is typ-
ically one or two levels at most, even this potential cost is small compared to the usually more substantial
cost in keystrokes and mouse movements.



use an aggregation strategy. These are not the tasks we have modeled, and more
research is required to understand how the aggregation strategies play out in such sit-
uations. (See Bhavnani et al. 1999 for how we taught students to decompose complex
drawings and to use aggregation strategies.) Given the huge savings in execution
time predicted by our GOMS models of simple tasks, it is likely that the more com-
plex the drawing, the greater the cost of not using appropriate aggregation strategies.
Therefore, we expect that the extra mental effort required to decompose complex
tasks will be more than compensated by the overall savings in time that aggregation
strategies provide.

For these reasons, we believe that in simple task situations similar to those we
and others have observed (Doane et al. 1990; Rosson 1983; and Nilsen et al. 1993),
the benefits of using aggregation strategies far outweigh the negligible performance
costs. Therefore, if they had been known, they would have been used. In contrast,
during the performance of more complex tasks, a tradeoff may arise between the
cost of planning the task decomposition and the benefits of executing the appropri-
ate aggregation strategies. Further research would be needed to understand such
tradeoffs.

5.4.2.3 Prior Knowledge Dominating Performance

Several studies have shown how prior experience of manual tasks has a strong effect
on performing computerized tasks. For example, many researchers have shown that
the difficulties expert typists encounter when they first learn to use a text editor can
be explained by their prior knowledge of using typewriters (Carroll and Thomas
1982; Douglas and Moran 1983; Halasz and Moran 1982; Lewis and Mack 1982;
Mack et al. 1983; and Waern 1985). Marchionini (1989) found that many high school
students, even after being trained to use online encyclopedias with sophisticated query
searches, tended to use simple index-based searches similar to manual searches of
printed encyclopedias. It may be the case that users know most efficient strategies but
fail to use them because they are dominated by prior knowledge. The difficulty of
breaking previously learned habits has been explored by cognitive theories such as
ACT* (Singley and Anderson 1989).

The strong effects of prior knowledge may explain L1’s interactions. Prior to
using CAD, L1 had spent many years using manual drafting tools to create architec-
tural drawings. The tools of manual drafting (such as the T-square, triangle, pencil,
and eraser) are precision tools that assist users in creating accurate drawings. They
are obviously not designed to assist users in iterative tasks. When using such tools,
the user performs all the iteration. If 10 lines have to be drawn, then each line has to
be individually drawn. Often, iterative drawing tasks require more than one tool such
as the task of shortening 10 lines that requires each line to be erased and then redrawn
accurately. For such tasks, it makes sense to use the Sequence-by-Operation strategy
where all the 10 lines are erased, followed by redrawing all the 10 lines because it
saves switching between the eraser and the pencil. This, of course, is exactly the
strategy used by L1. Because L1 had spent many years using manual drafting tools,
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the well-learned Sequence-by-Operation strategy (efficient in manual drafting but
inefficient in CAD) may in fact have blocked the use of the Aggregate-Modify strat-
egy even though he knew it. It seems possible that if L1 had been cued to a better
way, he might have switched to the better strategy.

5.4.3 Discussion of Possible Explanations of 
Inefficient Computer Usage

The preceding sections have presented several reasons that conspire against users
employing strategic knowledge. Our evidence suggests that the more compelling rea-
sons involve the difficulty of acquiring strategic knowledge or that this knowledge is
insufficiently strong to routinely come into play in real-world tasks. Furthermore,
users do seem to value the benefits provided by efficient strategies, and those benefits
seem to be real.

While we do not deny that cognitive cost will be incurred in learning efficient
strategies, we believe this cost does not extend in any meaningful way to skilled per-
formance. There are situations where this may not hold—for example, when users
are under the effects of fatigue, boredom, or low motivation. Neither present-day
cognitive theory in HCI nor our data speak to this issue, and it should be investigated
further. However, under the normal, goal-directed, skilled performance often studied
in HCI, the aggregation strategies posited here are efficient at performance time and
do add value to those task situations where time is important to users.

The cost of acquiring an efficient strategic level of knowledge is currently very
high. It is so high, in fact, that it is not surprising that many studies of “regular” users
report this lack of knowledge. There do exist subpopulations of users who enjoy
experimenting with different methods in order to push the edge of their computer
knowledge or other groups who experiment and compete with friends to find the
fastest ways to perform tasks. Such users are motivated to invest the time necessary
to acquire efficient strategies. However, as evidenced by the studies presented in this
and other papers, such users are not universal.

Many approaches can be taken to alleviate this situation ranging from making
strategic knowledge explicit through training, manuals, help systems, and tutorials,
to making organizational changes to encourage exploration, feedback, and sharing of
knowledge. However, we believe all these approaches depend on the central fact that
the strategic knowledge must first be identified before it is disseminated. In the next
section, we describe other general strategies that are important in the use of complex
computer applications.
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5.5 General Computer Strategies 
beyond Aggregation

The basic notion underlying all aggregation strategies is that an efficient way to deal
with the iterative task of operating on many objects lies in the ability to aggregate the
objects and to apply operations on that aggregate. As we discussed in Section 5.2,
this ability shifts the task of iterating over each object from the user to the computer.
Such strategies are possible because computers have the power to iterate over many
objects in an aggregate. Aggregation strategies therefore exploit the power of itera-
tion provided by computers. This insight motivated us to look for other powers pro-
vided by computer applications and to explore whether these powers could help
identify other efficient strategies.

Our explorations led us to identify three other powers that were generally pro-
vided across computer applications: propagation, organization, and visualization.4

As shown in Figure 5.12, each of these powers requires a set of strategies to exploit it.
Propagation strategies exploit the power of computers to modify objects that are con-
nected through explicit dependencies. These strategies allow users to propagate
changes to large numbers of interconnected objects. Organization strategies exploit
the power of computers to construct and maintain organizations of information. Such
strategies allow for quick modifications of related data. Finally, visualization strate-
gies exploit the power of computers to display information selectively without alter-
ing its content. Strategies of visualization can reduce visual overload and navigation
time. Similar to the general aggregation strategies presented in Section 5.2, the fol-
lowing section will discuss how the seven strategies in the previous three categories
are useful and meaningful in word processing, spreadsheet, and CAD tasks. These
strategies also begin to extend our definition of efficiency from task time and errors to
include other important variables such as modifiability of content, and visual over-
load.5 All these strategies appear to be intuitively efficient but need to be rigorously
tested through future research.

5.5.1 Propagation Strategies

The first two strategies in Figure 5.12 (Strategies 1 and 2) exploit the power of com-
puters to propagate modifications to objects that are connected through explicit
dependencies. Strategy 1 makes the dependencies between objects “known” to the
computer so that (1) new objects inherit properties or receive information from
another object, and (2) modifications can propagate through the dependencies. For
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example, word processor users can create paragraphs that need to share a common
format to be dependent on a common definition. When the definition is modified, all
the dependent paragraphs are automatically changed. Similarly, formulas in a spread-
sheet can be linked to dependent data, or graphic elements in a CAD system can be
linked to a common graphic definition of objects.

Strategy 2 exploits such dependencies to generate variations of the same informa-
tion. For example, the strategy could be used to explore different looks of a documentN
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FIGURE 5.12 Seven general strategies beyond aggregation strategies and how they
are useful in word processing, spreadsheet, and CAD tasks

General Strategies Word Processing Examples Spreadsheet Examples CAD Examples

Propagation

1. Make dependencies Make paragraphs dependent Make formulas dependent Make window design 
known to the on a format definition on numbers in cells dependent on a 
computer graphic definition

2. Exploit dependencies Modify style definitions to Modify formula depen- Modify graphic 
to generate variations generate variations of the dencies to generate definitions to 

same document different results for the generate variations 
same data set of a building facade

Organization

3. Make organizations Organize information using Organize yearly data in Organize columns 
known to the lists and tables different sheets and walls on 
computer different layers

4. Generate new Generate table from tabbed Generate bar graph from Create 3-D model
representations from words table from 2-D floor plan
existing ones 

Visualization

5. View relevant Magnify document to read View formulas, not results Do not display 
information, do not fine print patterned elements
view irrelevant 
information 

6. View parts of Use different views of the Use different views of the Use two views 
spread-out same document to bring two same document to view focused at the ends
information to fit tables together on the screen column headings and data of a long building
simultaneously on for comparison at the end of a long table facade to make
the screen comparisons

7. Navigate in Use outline view to view Use outline view to view Use global view to 
global view, entire document and specify entire spreadsheet and view entire building
manipulate in location of interest, use local specify location of interest, and specify location
local view view to make modification use local view to make of interest, use local

modification view to make
modifications



in a word processor, generate different results in a spreadsheet by altering a variable
(such as an interest rate), or create several variations of window designs in a building
facade while using a CAD system.

5.5.2 Organization Strategies

Strategies 3 and 4 exploit the power of computers to construct and maintain organiza-
tions of information. Strategy 3 reminds users to make the organization of informa-
tion known to the computer to (1) enhance comprehension and (2) enable quick
modifications. For example, a table constructed with tabs in a word processor is not
“known” to the computer as a table, and therefore the tabular structure may not be
maintained when the table contents are modified. On the other hand, a table that is
known to the computer will be maintained under any modification of its contents.
Similarly, data for different years in a spreadsheet can be organized in separate sheets
for easy access, and different building elements such as columns and walls can be
separated in different layers. Strategy 4 generates new representations from existing
ones. For example, tabbed tables in word processors can be converted to tables and
vice versa, data in a spreadsheet can be represented as charts, and 3-D graphic objects
can be generated from 2-D representations and vice versa.

5.5.3 Visualization Strategies

The last three strategies in Figure 5.12 (Strategies 5–7) exploit the power of comput-
ers to view information selectively. Strategy 5 can be used to alter the amount of
information displayed by viewing relevant information and not viewing irrelevant
information. For example, when text is too fine to read while using a word processor,
this strategy could be used to magnify the view instead of changing the font size.
Similarly, in a CAD system, patterned elements can be undisplayed when not needed
in order to make the relevant information more salient.

Strategy 6 addresses the limited screen space of most computer terminals. Often,
users have tasks that require them to compare or manipulate objects that are difficult
to view simultaneously in a single view. For example, a user might need to compare
the contents of a table at the beginning of a long word processing document to the
contents of a table in the middle of the same document. In such cases, instead of
moving back and forth between the tables, it is more efficient to set up views that
focus on each table to enable both to be viewed simultaneously on the screen. This
strategy is clearly useful in large documents containing text, numbers, or graphic ele-
ments and therefore generally useful across applications using such objects.

Strategy 7 extends the notion of selective viewing to tasks involving a combina-
tion of navigation and manipulation. For example, a CAD user might need to make
many precise changes to different parts of a large floor plan. A magnified view is
needed to make the precision changes, while a global view is needed for navigation
to the next task. One way is to zoom in to perform the precise modifications and then
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to zoom out of the same view to navigate to the next task. A more efficient method is
to have one global view of the file for navigation and one local view to make the
changes. The user then selects the location of interest in the global view, which auto-
matically updates the local magnified view where the user can make the precise mod-
ifications. As shown in Figure 5.12, this strategy is useful when modifying a large
word processing document as well as a large spreadsheet.

Currently we do not have a systematic way to identify powers of computers nor do
we understand how to systematically identify efficient strategies from these powers.
However, we are convinced that teaching such strategies would benefit users. To test
this hypothesis, we taught one group of freshman students to use UNIX, Microsoft
Word, and Microsoft Excel using commands and strategies, and compared them to
another group of students who were taught only commands (Bhavnani 2000b; Bhav-
nani and John 2000; Bhavnani et al. 2001). Preliminary results from the experiment
show that strategies could be taught effectively in the same amount of time as teach-
ing just commands. Furthermore, the results also indicate that the students could
transfer the strategies across applications. The analysis of strategies has therefore led
to the reexamination of the content and delivery of computer literacy courses with
promising results.

5.6 Summary and Future Research

To counteract the widespread inefficient use of computer applications, this paper
identified and analyzed efficient strategies in the intermediate layers of knowledge.
These strategies have three characteristics: (1) They are efficient because they exploit
powers offered by computer applications such as iteration, propagation, organiza-
tion, and visualization; (2) they need to be made explicit to users because the knowl-
edge to use them is neither suggested by tools nor by task descriptions; and (3) they
are generally useful across computer applications. The preceding characteristics
inspired the design and testing of a strategic approach to training with promising
results. These results suggest that the cost of learning and applying efficient strate-
gies can be easily addressed by proper strategic instruction.

Based on our experience in teaching strategies, we believe that the identification of
efficient strategies should be a key research goal. Therefore, we pose the question: Is
there a framework that can systematically identify efficient strategies? There are sev-
eral tantalizing clues that such a framework does exist. For example, we have observed
that in addition to powers, computers also have limitations, such as in screen size,
memory size, and processing speed. When task requirements exceed such resources,
users may benefit by efficient strategies to circumvent the limitations (Bhavnani and
John 1998). Therefore, powers, limitations, and their interactions could be the source of
many strategies. A systematic identification of powers and limitations of computers
could be an important step toward building the framework.N
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Another clue toward the framework is that efficient strategies in the intermediate
layers could contain strategies at different levels of generality. For example, at one
level, strategies could be relevant only to a particular application such as Microsoft
Word. These strategies deal with eccentricities of the package but are generally use-
ful for many tasks in that application. At another level, strategies could relate to an
entire domain such as CAD but not outside. For example, strategies to precisely
locate points using snap locks are generally useful across all CAD packages but not
relevant to word processors. At yet another level of generality, strategies apply across
domains, such as those on which we have focused in this paper. These levels could
structure the search for efficient strategies.

Besides exploring a framework to identify efficient strategies, we are also exploring
how strategies can guide the design of functionality. Designers could systematically
check whether their designs provide the functionality to execute efficient strategies and
test whether that functionality actually helps users become more efficient. Research on
the systematic identification of strategies in the intermediate layers of knowledge can
therefore not only lead to more effective ways of training but also to more principled
methods to design functionality (Bhavnani 2000a). Both of these approaches should
counteract the persistence of inefficient usage, which has plagued modern computers
for many years.
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