
CHl 98 . 18-23 APRIL 1998

Delegation and Circumvention:
Two Faces of Efficiency

PAPERS

Snresh K. Bhavnani Bonnie E. John
School of Architecture HCI Institute

Carnegie Mellon University Carnegie Mellon University
Pittsburgh PA 15213 USA Pittsburgh PA 15213 USA

+1412 363 8308 +14122687182
su.resh@?andrew.cmuedu Botie.John@cs.cmu.edu

ABSTRACT
Throughout history, inefficient methods to use devices have
been replaced by more efficient ones. This shift typically
occurs when users discover how to &legate work to the
powers of a tool, and to circumvent its liiitations.
Strategies of delegation and circumvention, therefore, appear
to be the core of efficient use. To show how this approach
can expiain the relationship between tools and strategies in
complex computer systems, we describe five ways to
perform a real-world drawing task with current as well as
5.rture tools. We then present five corresponding GOMS
models that demonstrate the value of efficient strategies
when compared to the observed behavior of a professional
CAD user. We conclude by presenting a generalized
framework to characterize efficient strategies and discuss its
relevance to design and training.

Keywords
Strategies, CAD, GOMS, efficiency, productivity.

1MTRODUCTlON
Records ii-am early civilizations show that humans
throughout history have developed devices and processes to
assist in the efficient performance of tasks. The Sumerians,
for example, first began to write on clay tablets by
scratching marks on their surface. Over 700 years, this
method of writing gradually changed into the cuneiform
script comprising of wedge-shaped marks pressed into clay
with a reed stylus. Historians suggest that this change was
largely motivated by scribes who discovered that pressing
marks into de clay instead of scratching upon its surface
was not only faster, but also more durable over time [l I].
While the Sumerians may have had the luxury to gradually
develop a more efficient method of writing on wet clay,
today’s users of computer tools have lhr less attention and
time resources to become efficient As complex
applications such as CAD and word-processors continue to
explode with a profusion of new tools, users level off into
su&ient usage patterns that tend not to exploit potential
efficiencies. Furthermore, several longitudinal and real-

~em-kion to make di&Jhrd copies ofail or part oft& mat&d for
Personal or cl~oom use is granted without fee provided that the copis
.xe not made or diibuted for profit or c~mmem‘al aavantage, the copy-
e&t notk the title ofthepublicaion andits date appa, and no& is
s;~‘~ ht ‘=PJti&t is by permission of the ACM, Inc. To copy o&n%&,
to repubhh, 10 post on sewers or to redistribute to lists, requ& sppcific
permission andfor fee.
CHI 98 Los Angeles CA USA
coPsJ$ht 1998 o-s9791-975-0/9s/4..s5.00

world studies suggest that neither good design nor
experience can ensure that users move from a sufficient to an
efficient use of computer tools [4,6,8, 141.
Based on observations of real-world use of complex
systems, we have argued that strategies hold the key to
efficient usage, and identified several that were shown to be
not only powerful, but also generally useful across
applications [3, 41. However, we need a more systematic
approach to understand the relationship between computer
tools and efficient strategies. Similar to fmmeworks that
help us understand and prevent errors through better design
[15, 161, this paper defines a hanrework to help us
understand and identify efficient strategies.
We begin by analyzing examples from history to
understand the relationship between tools and the strategies
to use them efficiently. These examples suggest that as new
and more powerful tools evolved in the past to improve
product and performance, they often presented new
limitations either due to inherent constraints, or due to the
new tasks that were attempted. The efficient use of such
tools therefore required a combination of delegation
strategies that exploited the powers of these tools, as well
as circumvention’strategies that dealt with their limitations.
The circumvention strategies transformed either the process,
or the task, or triggered the development of a more powerful
tool, in which case the process repeated.
To show how the relationship between tools and strategy
is relevant to computer usage, we analyze a real-world CAD
task performed by a user during an ethnographic study [2].
Starting from how such a drawing task would be done
using manual tools, we explore the effect of the increasing
sophistication in CAD tools on strategies to complete the
task In order to test the hypothesis that these strategies am
actually efficient and of value to users, we present the results
from five GOMS models. These models range from how the
user performed the task on a current version of the system,
to how the same task could be done in future versions. The
analysis demonstrates that regardless of how powerful
computer systems become, their efficient usage requires
delegation and circumvention strategies. However, while
these strategies can have strong effects on product and
performance, they may not be obvious to even experienced
computer users.

273

PAPERS CHI 98. 18-23 APRIL 1998

We then present a f&rework of strategies focused on
iterative tasks, and show how it can be generalized. In
conclusion we discuss how such a framework could be used
to explain the relationship between tools and strategies to
users, as well as to help designers more systematically
explore the effects of their designs.

CIRCUMVENTION AND DELEGATION IN
HISTORY
There are numerous examples throughout history that show
the relationship between tools and efficient methods to use
them. The following three illustrate some important
concepts about efficient methods.
According to surviving records, most scribes of ancient
civilizations either wrote from right to left or from top to
bottom. But around the fiflh century BC the Greeks began a
dramatic reversal, for a period their writing zigzagged
horizontally in a style known as boustrophedon (as the ox
plows), before they settled down to the modem style of
writing in English from left to right [7, 111. What might
have caused this gradual but radical shift7
Historians and calligraphy scholars note that this change
coincided with the replacement of the reed brush by the reed
pen as the dominant writing tool [ll]. The reed pen, whose
tip, if cut and used properly, o&red a more precise way of
making marks on papyrus. However, unlike the reed brush,
the reed pen could easily catch in the fibers of rough
papyrus. Historians hypothesize that the Greeks, over a
period of 200 years, realized that it was more efficient to
pull the reed pen across the rough papyrus rather than to
push it. For a right-handed scribe, this meant writing Ilom
left to right. Therefore the Greeks used new methods to
exploit the hard material of the reed pen to be more precise,
and overcame its limitation by changing the direction of
writing.
At a later stage in the history of writing, the reed pen and
papyrus were replaced by the much more precise quill and
smooth parchment, both of which 00bmd a new range of
possibilities to the medieval scribe. Illuminated
manuscripts of that em show extremely detailed floral and
abstract patterns in brilliant colors. But these elaborate
decorations greatly increased the time to produce such
books as demonstrated by the Book of Kells from Ireland,
which was never completed [l 11. One of the incomplete
pages reveals how its illuminators had sped up the process.
This page, like others, contained several independent
patterns that had to be painted in many colors. Although
the illuminator could have completed each pattern in turn
with all its colors, the page shows that all patterns across
the page had been painted with yellow. By finislrmg all
areas of one color, the painter had reduced tool switching
between paint brushes or color. In addition, this procedure
may have allowed the yellow paint to dry on the first
pattern while subsequent patterns were painted yellow;
consequently another color paint could be applied
immediately after the last pattern’s yellow was complete.
Despite this task organization, such processes still remained
time-consuming, and the replication of books was
laboriously slow.

The production of books was radically changed with the
invention of the printing press. With-the advent of this new
technology, the construction and replication of individual
pages could be done fin more rapidly compared to the
manual process. However, early printers in Germany took
time to realize that the way to exploit the iterative power
provided by the press was by not adding anything to the
copies. For instance, many early books tried to copy the
style of scribed manuscripts by hand-painting first letters of
paragraphs on pages after they were printed. Later printers
abandoned this approach, making the book production
process far more efficient.
The above examples provide several insights into the
evolution of efficient methods. First, none of the efficient
methods employed were absolutely necessary to complete
the tasks but were employed as they improved either the
quality of the product, or performance of the tasks. Because
such methods are goal-oriented and non-obligatory, they
have been defined as strategies [4,17].

Second, each new tool offered new or increased powers and,
by using the tools efficiently, users could exploit these new
powers. These methods can therefore be referred to as
delegation strategies. In the case of the reed pen and quill,
by using proper strategies to prepare and use the tools,
users could delegate precision to the tools; with the
printing press, users could delegate the iterative task of
replication to the printing process.
However, new limitations often accompany new powers,
either due to inherent constraints in the tool, or when new
tasks am attempted with the new tools. When users
perceive such limitations, they may make a change to the
process (such as the change in writing direction by the
Greeks), or move to another tool (such as the printing
press). These transformations can therefore be regarded as
circumvention strategies.

While the above explanation of circumvention and
delegation strategies through history is plausible, what
relevance does it have to the evolution of computer tools
and the strategies to use them? Moreover, are the efficient
strategies to use these tools obvious to experienced users?

THE EFFECT OF DRAWING. TOOLS ON
EFFICIENT STRATEGIES
To demonstrate how drawing tools affect strategies, we
present a real-world task performed by a CAD user during
an ethnographic study [2]. This task and user behavior is
typical of 9 other users currently being analyzed [l] (for
example, see [2] and [3] for the analysis of another user’s
interaction from the same data). One of the users from that
study, “Ll”, had more than 2 years experience in using a
CAD system called MicroStationm (version 4). His task
was to edit a drawing containing ceiling panels in an
architectural plan that overlapped air-condition vents. Such
repetitive tasks are common during the detail drawing stage
of a building design. As vents go vertically through ceiling
panels, they both cannot occupy the same space. Therefore,
as shown in Figure 1, the task is to remove all the line
segments representing ceiling panels that overlap the
rectangles representing the air-condition vents.

274

Cl-II 98 . 18-23 APRIL 1998 PAPEM

Figure 1. The panel clean-up task requires all ceiling panel
lines that overlap the air-condition vents to be modified.

The vents and panels are defined in two diflbrent drawing
files that are simultaneously displayed on the screen to
reveal their overlap. The vents (shown here in black), were
placed in a file by an engineer, and are displayed on the
screen by Ll as a REFERENCE FILE, where elements can be
viewedandselected, but not edited The panels (shown in
gray), were placed by an architect and viewed by Ll as an
editable file. Ll can therefore modify the panels with respect
to the vents. (Ihis separation of information is necessary to
enable architects and engineers to perform tasks
independently and at different stages of the design process).
The file has 21 such vents, all of them similar to those
shown in Figure 1. Ll zoomed in and promed a single
window in order to &me sets of these vents to work on.
The rectangle around the vents in Figure 1 represents a
typical example of such a window setup, with 3 of the 21
vents showing. The remainder of this paper will refer to
editing the panels overlapping these three vents as the panel
clean-lap task
Depending on the tools available to an architect, the panel
clean-up task can be performed in several ways’. To
understand the relationship between tools and efficient ways
to perform the task, we begin by descriimg strategies to use
simple drawing tools available in manual drafting as well as
in CAD, and progress towards more sophisticated CAD
tools that either exist or are being prototyped. At each stage
we shall explore the powers and limits of the tools and
discuss efficient strategies to deal with them. It is
important to remember that more sophisticated tools
usually appear in cd&ion to less sophisticated tools in
complex computer applications. Thus, users always have a
choice of strategies, some of which may have been efficient
in older versions of the application, but which are inefficient
relative to the new tools.

’ There are at least two ways that obviate the panel clean-up
task. The first is to draw the panel lines only uffer the vents
have been placed. But this is not a general solution as the
locations of vents typically change during the evolution of
the design, in which case the architect has no option but to
modify all the panel lines again. The second approach is to
make the vents opaque and place them over the panel lines,
therefore masking the overlap. While this approach could
pioduce a correct printed out drawing in some CAD systems,
it does not produce an accurate CAD model on which other
operations such as automatic dimensioning can be performed.
The strategies presented in this paper assume that the panels
and vents can be placed in any order, and the task requires an

Powers and Limits of Precision Tools
It is well-known that manual drafting tools provide users
with the ability to create precise graphic elements. For
example, the T-square provides constraints to the
movement of a pencil and enables a user to draw precise
horizontal and parallel lines. Therefore, given a T-square
and a set-square, a user can delegate the act of achieving
precision in horizontal and vertical lines to the tools. With
such manual drafting tools, one way to perform the panel
clean-up task is to erase a segment of each line to an
approximate distance, followed by precisely redrawing the
lines to meet accurately at the vents.
As shown in Figure 2a, this approach to the panel clean-up
task can also be performed on CAD using equivalent
precision tools. The DELETE-PART-OF-ELEMENT tool could
cut each panel line, and EXTEND-TO-INTERSECTION could
extend it precisely to the boundary of the vent. We call
cutting and extending each line in turn an instance of the
Sequence-by-Element strategy.
The Sequence-by-Element strategy is sufficient for a small
number of elements. However, when this strategy is used
for iterative tasks with many elements, which are typical in
the production of architectural designs (e.g., our user had to
clean up 21 vents, each with about four overlapping
elements), they can offer little assistance beyond precision.
The delete and extend tools offer only the ability to apply
single operations to single elements, and therefore have to
be repeatedly applied to each line overlappin+ each vent.
One way to circumvent this liiitation, at least partially, is
to reorganize the task by reducing the number of times a
tool is switched. Therefore, instead of selecting the
DELETE-PART-• F-ELEM tool and applying it to a line,
then selecting EXTEND-TO-INTERSEC~ON and applying it
to the line, a more efficient method as shown in Figure 2b,
is to delete segments of all relevant lines, followed by an
extension of all the erased lines to meet the vent boundary.
We call this method an instance of the Sequence-by
Operation strategy.
Sequence-by-Operation addresses the problem of repeated
tool-switching in the Sequence-by-Element strategy, but no
matter how these tasks are reorganized, precision tools just
cannot assist much in iterative tasks. A more general
approach to circumvent the limitation of precision tools is
to use an entirely diflbrent set of tools, which allow the
delegation of iteration.

Powers and Limits of Iteration Tools
A wide range of applications such as CAD, spreadsheets,
and word-processors provide assistance for iterative tasks
through aggregation. Aggregation refa to the ability to
group disjoint elements in various ways and to manipulate
these groups with powerful operators [4]. There appear to be
three types of aggregation tools: those that allow for the
application of single operations on element aggregates, the
application of operation aggregates on single elements, and
the application of operation aggregates on element
aggregates. We call the general class of strategies to use
these tools the Aggregate-Mod> (AM) strategies.

215

-.-. . -_ ---- ..- .---_- -. ~____ - ,̂__u_ .._ __‘*^‘-,22_----’ ̂ . ‘--- r. _.__ --- _. ,

PAPERS CHI 98 . 18-23 APRIL 1998

A. Sequence-by-Element

Delete segment of a line Extend a line
Repeat for each line

B. Sequence-by-Operation

Delete segments of all lines Extend all lines

C. AM-Fence

Place fence over vent Set mode and delete
Repeat for each vent

D. AM-Trim

Select all vents

E. AM-Query

Select a line
Repeat for each line

Query-select all vents Execute difference
and panels operation

Figure 2. Five strategies to perform the panel clean-up task
l’he vents and panels are schematic and are not drawn to scale.

Single Operations on Element Aggregates
Au example of a tool that allows a user to apply single
operations on au aggregate of elements is the PLACE-FENCE
command provided by MicroStationm. This command
allows a user to place a shape over any number of elements,
set a mode of element selection (such as the CLIP-MODE
which selects only segments of elements that are inside the
fence boundary in the aggregate, therefore replacing the
extend operation) and manipulate or modifjl the resulting
set.
As shown in Figure 2c, the FENCE tool could be used to
perform the panel clean-up task. To use the FENCE tool, the
user must place a rectangular fence on top of the vent by
accurately selecting its vertices, setting the CLIP-MODE,
and then applying the delete operation to the aggregate. The
computer responds by deleting all the element segments
within the boundary of the fence. (Since the vents are in a
REFERENCE FILE, they will be unaffected by this operation).
The crucial aspect of this strategy is to aggregate before
modification, which relieves the user from operating on each
element. However, the fence tool requires single operations
(for example FENCE DELETE) to be independently applied to
element aggregates, and there can be only one fence active at
a time.

Operation Aggregates on Single Elements
One way to circumvent the single-operation limitation of
the FENCE tool is to use the TRIM tool instead. With this
tool, a user can select any number of “cutting elements”
which define the limits to which intersecting elements will
be deleted. Therefore the delete and the extend operation are
aggregated for the user over all the vents. However, to
disambiguate which segment of an intersecting line is to be
deleted, the command requires the user to click on the
appropriate segment of each element.
These new powers and limitations allow for a different
instantiation of the AM strategy. As shown in Figure 2d,
this new tool could be used by first selecting all the vents.
When the TRIM command is invoked, the selected vents are
interpreted as the limits to which the lines must be
modified. As the user selects each line, the aggregated
operation is applied to each line by deleting and extending
each line. Therefore, while this new command addresses the
limitation of the fence command which does not aggregate
operations, it forces the user to once again iterate over
single elements.

Operation Aggregates on Element Aggregates
The fundamental limitation of the FENCE and TRIM tools is
that they deal with primitive elements such as lines and
shapes, forcing the user in this case to deal with each vent.
Circumventing the limitations of FENCE and TRIM for
complex iterative tasks requires a difF&ent paradigm of
CAD, where users do not place lines and shapes, but
domain objects such as ceiling panels and vents. As these
objects would reside in a database, users could petiorm
sophisticated searches using queries enabling the
aggregation and manipulation of information in a much
more powerful way [18]. For example, as shown in Figure
2e, one can imagine a command that allows a user to

276

retrieve all occurrences of ceiling panels and vents that
overlap. This aggreg& of vents and panels can be
processed by using another command to petiorm a diflbmnce
operation between the geometry of each panel and the vents
that it overlaps.
The above strategies can be organized in a matrix as shown
in Figure 3.

THE VALUE OF EFFICIENT STRATEGIES
Although Figure 3 allows easy identification and
classification of sequence and AM strategies, it remains to
be shown that the AM strategies are actually more efficient
for real-world tasks, and whether they have value for real
users. To rigorously understand the effects of strategies on
performance, we conducted an NGOMSL analysis (a variant
of GOhgS [5] described in [12]) on all five strategies to
perform the panel clean-up task. Each model implemented
one of the strategies in Figure 2 down to the keystroke
level. For example, the goal hierarchy (excluding
keystrokes for the lowest subgoal) for the AM-Fence
strategy (Figure 2~) is shown below:
Goal: Edit Design
s Goal: hqodifv Multiple Objects (Repeatfor al1 vents)
m . Goal: Determine Strategy (In this cave, AM)
- - * Goal: Execute Aggregate-Modify Strategy
. . . . Goal: Aggregate Objects
. Goal: Place Fence
. . f * Goal: Modify Objects
. . - - . Goal: Delete Elements
. . . _ * - Goal: Set Clip Mode
. . s . . . Goal: Execute Delete Command
The execution times predicted by the NGOMSL models
were then compared to Ll’s real-world behavior to
determine the potential for improved productivity.

A GOMS Comparison of Five Strategies
The five NGOMSL models developed using GLEAN [19]
(a GOhJS interpreter), produced estimates for the execution
times for each of the strategies on the panel clean-up task for
three vents. As shown in Figure 4, the execution time
drops as more and more iterations are delegated to the
computer. While Sequence-by-Operation saves some time
by grouping operations, the AM strategies produce greater
time savings by delegating iteration.
The analysis however revealed one unexpected outcome.
The AM-Trim model predicts a time of almost 17 seconds
less than the AM-Fence model. This was initially puzzling

Operations Elements Strategies I
Single Agg. Single Agg.

X X
Sequence-by-Element
Sequence-by-Operation

x X AM-Fence
X X AM-Trim
X X AM-Query

Figure 3. Five iteration strategies based on combinations of
fimctionalities. .

Execution Time Across Strategies

r 80
g 60
i=

40
20
0

U Strategies

Figure 4. Comparison of the predicted execution times for
dierent strategies to perform the 3-vent panel clean-up task.
The AM-Query strategy modifies the panel lines that overlap
all 21 vents instead of just 3.

as we expected the selection of individual lines to be more
time consuming than using a fence. Investigating the details
of this prediction revealed a general principle of these
strategies. The models were most sensitive to an increase
in the largest undelegated iteration. As shown in Figure 3,
the Sequence and AM-Trim models did not support
element aggregation and therefore were most sensitive to the
number of panel lines. Because the AM-Fence model could
not aggregate over operations, it was most sensitive to the
number of vents. The AM-Query strategy aggregates over
both elements and operations, so its model is neither
sensitive to the number of vents nor number of lines, and
the time shown in Figure 4 for 3 vents would be the same
for the entire 21-vent task. The AM-Trim model and the
Ah&Fence model are therefore in competition because the
number of limes more or less ofBets the number of vents in
the 3-vent task.
To test this hypothesis, a series of AM-Trim models were
executed while keeping the number of vents constant and
increasing the number of lines. Figure 5 shows that the
predicted execution time for the AM-Trim model is equal
to that of the AM-Fence model at around 32 lines, but this
time steadily increases as the number of lines increase.
Therefore, when the number of lines is small, and the
operations are restricted to cut and extend, the TRIM tool is
advantageous. But when the number of elements increases,
the FENCE tool produces better performance. Our 3-vent
example task involves 11 lines, so the TRIM tool wins in
Figure 4.

How Ll Performed the Panel Clean-up Task
Figure 4 shows a factor of nine reduction in time from the
least efficient strategy to the most efficient strategy. But this
theory-based information is only valuable to users if they
are not already using efficient strategies. To understand the

277 j

. - .I _-.-._i_.,--- - ._,_- --_ PI____. .I -- z -* I_. e+.. ->, - j ,:, . . ,. . ,_ ,I ‘

PAPERS CHI 98 . 18-23 APRIL 1998

Comparison Between the Execution Times
of the AM-Trim and the AM-Fence Strategies

50

+!j 40
s
8 30
(I)
-E 20
E
I= 10

0 I
Number of Panel Lines in the
3-vent Panel Clean-up Task

Figure 5. While the execution time for the AM-Fence strategy
remains constant, the execution time for the AM-Trim
strategy is directly proportionate to the number of panel
lines.

potential for productivity improvement, we examined Ll’s
behavior in the context of the specific application he used.
MicroStation=’ version 4, provided aggregation of elements
with the FENCE tool, but no tools for the AM-Trim or AM-
Query strategies. However, although Ll had previously
used the FENCE tool (based on our ethnographic data), he
consistently used the Sequence-by-Operation strategy to
delete and ex&end each lime that overlapped all of the 21
vents. The Sequence-by-Operation model is within 11% of
the error-t&e* real-world data. If Ll had used the AM-Fence
strategy to cut and extend groups of lines, it would have
taken him 40% of the time to complete the task.
In addition, Ll committed many errors which added 20.33
seconds to the error-free time. He committed both errors of
omission and commission. First, he did not notice that a
panel line located very close to the boundary of the upper
right-hand vent overlapped the vent; he had to return to it
after the rest of the lines had been cut and extended Second,
he accidentally selected a panel line just above the lower
right-hand vent instead of the actual vent boundary, thereby
extending a panel-line to the wrong location. This error of
commission went undetected and the drawing was
inaccurate after he completed the task Finally, he
committed many slips in the selection of panel and vent
lines, which required him to repeatedly r-e-select to get
exactly the line he wanted
Ll could have used the AM-Fence strategy with a SNAP
mouse option (where the cursor jumps to the closest

* The error-free time (105.7 sec.) was calculated by subtracting
the time Ll spent to commit, search for, and recover fium
errors (20.33 sec.), plus unexplained behavior (0.53 sec.),
from the total time (126.56 sec.) he spent editing the 3 vents.

intersection thereby delegating precision to the computer) to
accurately place the fence over the vent. With this procedure
all element segments within the fence, regardless of how
visually close they were to the vent boundary, would have
been selected. The errors related to precise line selection,
and those of not noticing lines that had to be cut and
extended, would not have occurred. This would have
reduced performance time and increased accuracy.
The above analyses demonstrate two important points.
First, when work is delegated to the computer, there am
fewer opportunities for errors. Second, even experienced
users such as Ll, doing extremely repetitive tasks, tend to
miss opportunities to delegate work to the computer.
We are not alone in observing that users do not use efficient
strategies to delegate iteration to computers. Other studies
in CAD [13], as well as in other domains such as
spreadsheet use [6, 141 show similar results where users
performing iterative tasks also missed opportunities to
delegate iteration to computers. The above analyses of
strategies to deal with iterative tasks, their effects on
performance, as well as the empirical data, provided the
basis to develop a generalized fimnework for iteration that
might be useful across domains.

THE ITERATION FRAMEWORK
As discussed earlier with reference to Figure 3, the diflbmnt
tools to assist in iteration could be characterized in terms of
single or aggregate operators applied to single or aggregate
elements. It is combinations of these functionalities that
produce various designs of tools which, in turn, require
particular strategies to exploit them. Figure 6 is an
extension of Figure 3 to include these relationships in a
more detailed framework. Each row defines a particular
combination of operator and element types, which is
directly related to what can and cannot be delegated to the
computer. The strategies emanate from these powers and
limitations. The Aggregate-Modify strategies (shaded gray),
exploit the power of iteration tools by delegating iteration.
Circumvention strategies can range from transforming a task
decomposition as demonstrated by the move to the
Sequence-by-Operation strategy, to using an entirely
di&rent set of tools (moving to a different row in the
tiework, if the tools exist). CAD tools are shown as
examples.
Because the framework shows the explicit relationship
between abstract functionalities, tools, and strategies, it can
be applied in four different ways: to identify strategy-
instantiations in other domains, to explore the design of
tools, to describe behavior, and to train users in the
repercussions of strategies.

ldenfificafion of Sfrafegy lnsfanfiafions
Since the iteration fiumework is structured around abstract
fimctionalities instead of specific tools, it can be used for
any application where these particular sets of fimctionalities
appear. For instance, using a STYLES tool on multiple
paragraphs in a word- processor can be seen as instantiation
of the fourth row in the matrix. The efficient strategy to
perform such a task is to define a style with multiple
attriiutes such as bold and italic (aggregate operations), and

278

CHl 98 . 18-23 APRIL 1998 PAPERS

Operations Elements Example

Single Agg, Single Agg. CAD Tools

Powers

Delegated

Limitations Efficient Strategies

Iteration cannot be Sequence-by-Operation

and elements

Figure 6. The iteration fi-amework showing the relationship between abstract functionality, tools, and strategies for tasks
requiring multiple operations on multiple elements. Precision tools (shown in white) cannot delegate iteration. This limitation
can be partially circumvented by reorganizing the task as described by the Sequence-by-Operation strategy, but more fully
addressed by using iteration tools with Ah4 strategies (shown in gray). Iteration tools themselves have various limitations
which can be circumvented by using increasingly sophisticated iteration tools, or through the use of future propagation tools
(not shown).

apply them to multiple paragraphs (-gate elements),
particularly ifthere are many iterations of this task.

&$gn of NeMt Tools
To demonstrate the use of this tiework to inform desi&,
consider the TRIM tool. The specific operation of this tool
was taken f?om MicroStatiorP version 5, and as shown in
Figure 6, its limitation is that it does not allow aggregation
over elements.
The previous analysis overcame this limitation by going to
an entirely new paradigm for CAD where domain-objects
are manipulated in a dat&ase (a paradigm used by several
archi~ research projects). However, the tiework
pinpoints tie limitation, which inspires are-design without
changing underlag paradigms. In this re-design, a more
specific version of the TRIM tool could allow the selection
of closed shapes which could act as cookie cutters on all
elements that overlap them. Since the lines to delete would
be encompassed by the closed shapes, this would be
unambiguous and not require the user to identify each
segment. Given this modification, the user could now select
all vents and delete all overlapping elements in one step,
effectively delegating all iteration to the computer.

Desctiption of Eehavior
The tiework can also be used to describe how users
interact with a system. Since the framework provides a
continuum of powers starting from no delegation to the
delegation of iteration over operations and elements, one
cm identify explicitly the level at which a particular user
petiorms a particular task. Instructors could use this
information to diagnose lack of knowledge on the part of the
user and decide which concepts (e.g., aggregation of
operations) and ski& to teach (e.g., use of the nUn4 tool).

Design of Trtining
We believe that there is nothing inherently wrong with the
way new tools evolve. Often metaphors of older
technologies are the only way to start exploring a new
technology as its development, usage, and exploration go
hand-in-hand. But we do think that the way tools are
introdxed requires a more systematic approach, and when
efEcient strategies shift, users must be made explicitly

aware, not of just what the new tools are (as is currently
done), but also how they directly affect the nature of tasks.
The framework could therefore be used to design training.
For instance, users can be taught to recognize opportunities
to delegate work to computer powers, as well as to
circumvent their limitations Exercises could focus on
planning and what we have called Learning-fo-5’ee
(elements and operations to profitably aggregate). In
addition, users can do tasks using several different strategies
in order to demonstrate the differences in pe&ormauce these
strategies afford. Here, exercises could focus on execution
and what we call Learning-to-Do. We are currently
exploring this approach of Learning-to-See and Leaming-to-
Do in a course on CAD for architecture graduate students.

TOWARDS A GENERAL FRAMEWORK OF
EFFICIENT STRATEGIES
Clearly there are other powers of computer applications
beyond precision and iteration. Thus, we are developing a
larger fi-amework of which the iteration fiamework is just a
small segment. In addition to precision and iteration, we
are currently investigating other powers such as
propagation, visualization, and generation as discussed
below.

Powers and Limits of Propagation Tools
Although me iteration tools that operate on domain
objects with queries are poweifid, they also have
limitations. For instance, each time a change in the vent
layout occurs, the user must remember to make the
appropriate changes to panels. Furthermore, these tools can
provide little help ifthe engineer decides to move the vents
aj?er the panel lines have been modified. Depending on the
way the vents are moved, the panel lines could be in
complete disarray; some would be partially overlapping the
vent, and some not touching them at all. This would force
the user into a labor-intensive process to search for, and
extend each cut line that did not terminate at a vent.
One way to overcome these limitations is to provide the
power of constraint propagation. With tools of propagation,
one can imagine future systems where ceiling panels
‘know” about their relationship to vents and vice versa,
and any change in vents can automatically propagate to the

279

PAPEFLS CHI 98 l 18-23 APRIL 1998

ceiling panels. However one can already expect problems to
emerge in such systems. For instance, once ceiling panels
are modified, they could violate some other constraint
leading to endless cycles of propagation where the user is
completely out of control. Tools and strategies to
circumvent such limitations will therefore have to be
defined.

Powers and Limits of Visualization Tools
One of the most important powers that make computer
applications useful to architects is the power of
visualization. With this power, users can visualize complex
objects such as buildings in many difiknt ways without
having to alter the underlying representation. However the
screen size of most current systems puts a severe constraint
on how much information can be viewed at the same time.
Users often fhce the tradeoff between visual detail and the
scope of information displayed on the screen. One way to
circumvent this liiitation in CAD is to have two
windows: one to always provide an overview of the entire
building, and the other zoomed lhr into the details of a
section. Procedures for easily navigating between these
views aheady occur in many CAD systems like
MicroStation~Z. However, as with the iteration strategies,
our data showed that Ll did not use this useful
circumvention strategy and spent unnecessary time panning
and zooming looking for the panel lines that had to be
modified

Powers and Limits of Generation Tools
While iteration and propagation can modify and replicate
existing elements, computer applications with powetful
algorithms can also generate new kinds of information not
explicitly provided by the user. For example, future
systems will enable users to explore designs generated by
computers based on constraints and rules [lo]. However
such systems incur huge overheads in their setup and
modification, and appear to be usefbl mainly for recurring
problem types (e.g., floor plans of hospitals, dorms,
barracks). Therefore they may require a whole new set of
strategies that have yet to be encountered.

CONCLUSION
Strategies of delegation and circumvention appear to be the
core of efficient use of complex systems. Understanding the
relationship between abstract functionality, tools, and
strategies can assist us in the development, training, and
efficient use of complex applications such as CAD. Our
analysis showed that regardless of how sophisticated CAD
tools may become in the future, it appears they will always
have powers as well as liiitations, which users must learn
to delegate and circumvent.

ACKNOWLEDGMENTS
This research was supported by the National Science
Foundation, Award:: IRI-9457628. The views and
conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of NSF, or the U. S.
Government. The authors acknowledge the contributions of 0.
Akin, U. Flemming, J. Garrett, H. Siion, G. Vallabha; and
Bentley Systems, Inc. for the academic edition of
MicroStationmr.

280

REFERENCES
1.

2.

3.

4.

5.

6.

Bhavnani, S. K. How Architects Draw with Computers: An
Analysis of Real-World CAD Usage, PhD. dissertation
(in preparation) Carnegie Mellon University, Pittsburgh.
Bhavnani, SK., Flemming, U., Forsythe, D.E., Garrett, J.H.,
Shaw, D.S., and Tsai, A. CAD Usage in an Architectural
Office: From Observations to Active Assistance.
Automation in Construction 5 (1996), 243-255.

Bhavnani, SK., and John, B.E. Exploring the Unrealized
Potential of Computer-Aided Drafting. Proceedings of CHI
‘96 (1996), 332-339.

Bhavnani, S.K., and John, B.E. From Sufficient to Efficient
Usage: An Analysis of Strategic Knowledge. Proceedings
of CHZ ‘97 (1997), 91-98.

Card, SK., Moran, T.P., and Newell, A. The Psychology of
Human-Computer Interaction. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1983.
Cragg, P.B. and King, M. Spreadsheet Modeling Abuse: An
Opportunity for OR? Journal of the Operational Research
Society 44 (1993), 743-752.

Denman, F. The Shaping of our Alphabet. Alfred A. Knopf,
New York, 1955.
Doane, S.M., Pellegrino, J.W., Klatzky, R.L. Expertise in a
Computer Operating System: Conceptualization and
Performance. Human-Computer Interaction 5 (1990), 267-
304.
Flemming, U., Bhavnani, SK., John, B.E. Mismatched
Metaphor: User vs. System Model in Computer-Aided
Drafting. Design Studies 18 (1997), 349-368.

lO.Flemming, U., Woodbury, R Software environment to
support early phases in building design (SEED):
Overview. Journal of Architectural Engineering, ASCE,
l(4) (1995), 147-152.

ll.Jackson, D. The Story of Writing. Taplinger Publishing
co., Inc., 1981.

12.Kieras, D. A Guide to GOMS Model Usability Evaluation
using NGOMSL. in M Helander & T. Landauer (eds.) The
handbook of human-computer interaction (Second
Edition). Amsterdam: North-Holland (in press).

13.Lang, G.T., Eberts, R E., Gabel, M. G., and Barash, M.M.
Extracting and Using Procedural Knowledge in a CAD
Task. IEEE Transactions on Engineering Management, 38
(1991), 257-68.

14.Nilsen, E., Jong H., Olson J., Biolsi, I., Mutter, S. The
Growth of Software Skill: A Longitudinal Look at
Learning and Performance. Proceedings of ZNTERCHZ ‘93.
(1993), 149-156.

15.Nom1an, D. The Design of Everyday Things. Doubleday,
New York, 1988.

16.Reason J. Human Error. Cambridge University Press,
1994.

17. Siegler, RS, Jenkins, E. How Children Discover New
Strategies. Lawrence Erlbaum Associates, New Jersey,
1989.

18. Snyder, J., Aygen, Z., Flemming, U. and Tsai, J. SPROUT - A
modeling language for SEED, in Journal of Architectural
Engineering, AXE, l(4) (1995), 195-203.

19.Wood, S. GLEAN - GOMS Language Evaluation and
Analysis. University of Michigan, 1995.

