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ABSTRACT 
Throughout history, inefficient methods to use devices have 
been replaced by more efficient ones. This shift typically 
occurs when users discover how to &legate work to the 
powers of a tool, and to circumvent its liiitations. 
Strategies of delegation and circumvention, therefore, appear 
to be the core of efficient use. To show how this approach 
can expiain the relationship between tools and strategies in 
complex computer systems, we describe five ways to 
perform a real-world drawing task with current as well as 
5.rture tools. We then present five corresponding GOMS 
models that demonstrate the value of efficient strategies 
when compared to the observed behavior of a professional 
CAD user. We conclude by presenting a generalized 
framework to characterize efficient strategies and discuss its 
relevance to design and training. 
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1MTRODUCTlON 
Records ii-am early civilizations show that humans 
throughout history have developed devices and processes to 
assist in the efficient performance of tasks. The Sumerians, 
for example, first began to write on clay tablets by 
scratching marks on their surface. Over 700 years, this 
method of writing gradually changed into the cuneiform 
script comprising of wedge-shaped marks pressed into clay 
with a reed stylus. Historians suggest that this change was 
largely motivated by scribes who discovered that pressing 
marks into de clay instead of scratching upon its surface 
was not only faster, but also more durable over time [l I]. 
While the Sumerians may have had the luxury to gradually 
develop a more efficient method of writing on wet clay, 
today’s users of computer tools have lhr less attention and 
time resources to become efficient As complex 
applications such as CAD and word-processors continue to 
explode with a profusion of new tools, users level off into 
su&ient usage patterns that tend not to exploit potential 
efficiencies. Furthermore, several longitudinal and real- 
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world studies suggest that neither good design nor 
experience can ensure that users move from a sufficient to an 
efficient use of computer tools [4,6,8, 141. 
Based on observations of real-world use of complex 
systems, we have argued that strategies hold the key to 
efficient usage, and identified several that were shown to be 
not only powerful, but also generally useful across 
applications [3, 41. However, we need a more systematic 
approach to understand the relationship between computer 
tools and efficient strategies. Similar to fmmeworks that 
help us understand and prevent errors through better design 
[15, 161, this paper defines a hanrework to help us 
understand and identify efficient strategies. 
We begin by analyzing examples from history to 
understand the relationship between tools and the strategies 
to use them efficiently. These examples suggest that as new 
and more powerful tools evolved in the past to improve 
product and performance, they often presented new 
limitations either due to inherent constraints, or due to the 
new tasks that were attempted. The efficient use of such 
tools therefore required a combination of delegation 
strategies that exploited the powers of these tools, as well 
as circumvention’strategies that dealt with their limitations. 
The circumvention strategies transformed either the process, 
or the task, or triggered the development of a more powerful 
tool, in which case the process repeated. 
To show how the relationship between tools and strategy 
is relevant to computer usage, we analyze a real-world CAD 
task performed by a user during an ethnographic study [2]. 
Starting from how such a drawing task would be done 
using manual tools, we explore the effect of the increasing 
sophistication in CAD tools on strategies to complete the 
task In order to test the hypothesis that these strategies am 
actually efficient and of value to users, we present the results 
from five GOMS models. These models range from how the 
user performed the task on a current version of the system, 
to how the same task could be done in future versions. The 
analysis demonstrates that regardless of how powerful 
computer systems become, their efficient usage requires 
delegation and circumvention strategies. However, while 
these strategies can have strong effects on product and 
performance, they may not be obvious to even experienced 
computer users. 
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We then present a f&rework of strategies focused on 
iterative tasks, and show how it can be generalized. In 
conclusion we discuss how such a framework could be used 
to explain the relationship between tools and strategies to 
users, as well as to help designers more systematically 
explore the effects of their designs. 

CIRCUMVENTION AND DELEGATION IN 
HISTORY 
There are numerous examples throughout history that show 
the relationship between tools and efficient methods to use 
them. The following three illustrate some important 
concepts about efficient methods. 
According to surviving records, most scribes of ancient 
civilizations either wrote from right to left or from top to 
bottom. But around the fiflh century BC the Greeks began a 
dramatic reversal, for a period their writing zigzagged 
horizontally in a style known as boustrophedon (as the ox 
plows), before they settled down to the modem style of 
writing in English from left to right [7, 111. What might 
have caused this gradual but radical shift7 
Historians and calligraphy scholars note that this change 
coincided with the replacement of the reed brush by the reed 
pen as the dominant writing tool [ll]. The reed pen, whose 
tip, if cut and used properly, o&red a more precise way of 
making marks on papyrus. However, unlike the reed brush, 
the reed pen could easily catch in the fibers of rough 
papyrus. Historians hypothesize that the Greeks, over a 
period of 200 years, realized that it was more efficient to 
pull the reed pen across the rough papyrus rather than to 
push it. For a right-handed scribe, this meant writing Ilom 
left to right. Therefore the Greeks used new methods to 
exploit the hard material of the reed pen to be more precise, 
and overcame its limitation by changing the direction of 
writing. 
At a later stage in the history of writing, the reed pen and 
papyrus were replaced by the much more precise quill and 
smooth parchment, both of which 00bmd a new range of 
possibilities to the medieval scribe. Illuminated 
manuscripts of that em show extremely detailed floral and 
abstract patterns in brilliant colors. But these elaborate 
decorations greatly increased the time to produce such 
books as demonstrated by the Book of Kells from Ireland, 
which was never completed [l 11. One of the incomplete 
pages reveals how its illuminators had sped up the process. 
This page, like others, contained several independent 
patterns that had to be painted in many colors. Although 
the illuminator could have completed each pattern in turn 
with all its colors, the page shows that all patterns across 
the page had been painted with yellow. By finislrmg all 
areas of one color, the painter had reduced tool switching 
between paint brushes or color. In addition, this procedure 
may have allowed the yellow paint to dry on the first 
pattern while subsequent patterns were painted yellow; 
consequently another color paint could be applied 
immediately after the last pattern’s yellow was complete. 
Despite this task organization, such processes still remained 
time-consuming, and the replication of books was 
laboriously slow. 

The production of books was radically changed with the 
invention of the printing press. With-the advent of this new 
technology, the construction and replication of individual 
pages could be done fin more rapidly compared to the 
manual process. However, early printers in Germany took 
time to realize that the way to exploit the iterative power 
provided by the press was by not adding anything to the 
copies. For instance, many early books tried to copy the 
style of scribed manuscripts by hand-painting first letters of 
paragraphs on pages after they were printed. Later printers 
abandoned this approach, making the book production 
process far more efficient. 
The above examples provide several insights into the 
evolution of efficient methods. First, none of the efficient 
methods employed were absolutely necessary to complete 
the tasks but were employed as they improved either the 
quality of the product, or performance of the tasks. Because 
such methods are goal-oriented and non-obligatory, they 
have been defined as strategies [4,17]. 

Second, each new tool offered new or increased powers and, 
by using the tools efficiently, users could exploit these new 
powers. These methods can therefore be referred to as 
delegation strategies. In the case of the reed pen and quill, 
by using proper strategies to prepare and use the tools, 
users could delegate precision to the tools; with the 
printing press, users could delegate the iterative task of 
replication to the printing process. 
However, new limitations often accompany new powers, 
either due to inherent constraints in the tool, or when new 
tasks am attempted with the new tools. When users 
perceive such limitations, they may make a change to the 
process (such as the change in writing direction by the 
Greeks), or move to another tool (such as the printing 
press). These transformations can therefore be regarded as 
circumvention strategies. 

While the above explanation of circumvention and 
delegation strategies through history is plausible, what 
relevance does it have to the evolution of computer tools 
and the strategies to use them? Moreover, are the efficient 
strategies to use these tools obvious to experienced users? 

THE EFFECT OF DRAWING. TOOLS ON 
EFFICIENT STRATEGIES 
To demonstrate how drawing tools affect strategies, we 
present a real-world task performed by a CAD user during 
an ethnographic study [2]. This task and user behavior is 
typical of 9 other users currently being analyzed [l] (for 
example, see [2] and [3] for the analysis of another user’s 
interaction from the same data). One of the users from that 
study, “Ll”, had more than 2 years experience in using a 
CAD system called MicroStationm (version 4). His task 
was to edit a drawing containing ceiling panels in an 
architectural plan that overlapped air-condition vents. Such 
repetitive tasks are common during the detail drawing stage 
of a building design. As vents go vertically through ceiling 
panels, they both cannot occupy the same space. Therefore, 
as shown in Figure 1, the task is to remove all the line 
segments representing ceiling panels that overlap the 
rectangles representing the air-condition vents. 
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Figure 1. The panel clean-up task requires all ceiling panel 
lines that overlap the air-condition vents to be modified. 

The vents and panels are defined in two diflbrent drawing 
files that are simultaneously displayed on the screen to 
reveal their overlap. The vents (shown here in black), were 
placed in a file by an engineer, and are displayed on the 
screen by Ll as a REFERENCE FILE, where elements can be 
viewedandselected, but not edited The panels (shown in 
gray), were placed by an architect and viewed by Ll as an 
editable file. Ll can therefore modify the panels with respect 
to the vents. (Ihis separation of information is necessary to 
enable architects and engineers to perform tasks 
independently and at different stages of the design process). 
The file has 21 such vents, all of them similar to those 
shown in Figure 1. Ll zoomed in and promed a single 
window in order to &me sets of these vents to work on. 
The rectangle around the vents in Figure 1 represents a 
typical example of such a window setup, with 3 of the 21 
vents showing. The remainder of this paper will refer to 
editing the panels overlapping these three vents as the panel 
clean-lap task 
Depending on the tools available to an architect, the panel 
clean-up task can be performed in several ways’. To 
understand the relationship between tools and efficient ways 
to perform the task, we begin by descriimg strategies to use 
simple drawing tools available in manual drafting as well as 
in CAD, and progress towards more sophisticated CAD 
tools that either exist or are being prototyped. At each stage 
we shall explore the powers and limits of the tools and 
discuss efficient strategies to deal with them. It is 
important to remember that more sophisticated tools 
usually appear in cd&ion to less sophisticated tools in 
complex computer applications. Thus, users always have a 
choice of strategies, some of which may have been efficient 
in older versions of the application, but which are inefficient 
relative to the new tools. 

’ There are at least two ways that obviate the panel clean-up 
task. The first is to draw the panel lines only uffer the vents 
have been placed. But this is not a general solution as the 
locations of vents typically change during the evolution of 
the design, in which case the architect has no option but to 
modify all the panel lines again. The second approach is to 
make the vents opaque and place them over the panel lines, 
therefore masking the overlap. While this approach could 
pioduce a correct printed out drawing in some CAD systems, 
it does not produce an accurate CAD model on which other 
operations such as automatic dimensioning can be performed. 
The strategies presented in this paper assume that the panels 
and vents can be placed in any order, and the task requires an 

Powers and Limits of Precision Tools 
It is well-known that manual drafting tools provide users 
with the ability to create precise graphic elements. For 
example, the T-square provides constraints to the 
movement of a pencil and enables a user to draw precise 
horizontal and parallel lines. Therefore, given a T-square 
and a set-square, a user can delegate the act of achieving 
precision in horizontal and vertical lines to the tools. With 
such manual drafting tools, one way to perform the panel 
clean-up task is to erase a segment of each line to an 
approximate distance, followed by precisely redrawing the 
lines to meet accurately at the vents. 
As shown in Figure 2a, this approach to the panel clean-up 
task can also be performed on CAD using equivalent 
precision tools. The DELETE-PART-OF-ELEMENT tool could 
cut each panel line, and EXTEND-TO-INTERSECTION could 
extend it precisely to the boundary of the vent. We call 
cutting and extending each line in turn an instance of the 
Sequence-by-Element strategy. 
The Sequence-by-Element strategy is sufficient for a small 
number of elements. However, when this strategy is used 
for iterative tasks with many elements, which are typical in 
the production of architectural designs (e.g., our user had to 
clean up 21 vents, each with about four overlapping 
elements), they can offer little assistance beyond precision. 
The delete and extend tools offer only the ability to apply 
single operations to single elements, and therefore have to 
be repeatedly applied to each line overlappin+ each vent. 
One way to circumvent this liiitation, at least partially, is 
to reorganize the task by reducing the number of times a 
tool is switched. Therefore, instead of selecting the 
DELETE-PART-• F-ELEM tool and applying it to a line, 
then selecting EXTEND-TO-INTERSEC~ON and applying it 
to the line, a more efficient method as shown in Figure 2b, 
is to delete segments of all relevant lines, followed by an 
extension of all the erased lines to meet the vent boundary. 
We call this method an instance of the Sequence-by 
Operation strategy. 
Sequence-by-Operation addresses the problem of repeated 
tool-switching in the Sequence-by-Element strategy, but no 
matter how these tasks are reorganized, precision tools just 
cannot assist much in iterative tasks. A more general 
approach to circumvent the limitation of precision tools is 
to use an entirely diflbrent set of tools, which allow the 
delegation of iteration. 

Powers and Limits of Iteration Tools 
A wide range of applications such as CAD, spreadsheets, 
and word-processors provide assistance for iterative tasks 
through aggregation. Aggregation refa to the ability to 
group disjoint elements in various ways and to manipulate 
these groups with powerful operators [4]. There appear to be 
three types of aggregation tools: those that allow for the 
application of single operations on element aggregates, the 
application of operation aggregates on single elements, and 
the application of operation aggregates on element 
aggregates. We call the general class of strategies to use 
these tools the Aggregate-Mod> (AM) strategies. 
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A. Sequence-by-Element 

Delete segment of a line Extend a line 
Repeat for each line 

B. Sequence-by-Operation 

Delete segments of all lines Extend all lines 

C. AM-Fence 

Place fence over vent Set mode and delete 
Repeat for each vent 

D. AM-Trim 

Select all vents 

E. AM-Query 

Select a line 
Repeat for each line 

Query-select all vents Execute difference 
and panels operation 

Figure 2. Five strategies to perform the panel clean-up task 
l’he vents and panels are schematic and are not drawn to scale. 

Single Operations on Element Aggregates 
Au example of a tool that allows a user to apply single 
operations on au aggregate of elements is the PLACE-FENCE 
command provided by MicroStationm. This command 
allows a user to place a shape over any number of elements, 
set a mode of element selection (such as the CLIP-MODE 
which selects only segments of elements that are inside the 
fence boundary in the aggregate, therefore replacing the 
extend operation) and manipulate or modifjl the resulting 
set. 
As shown in Figure 2c, the FENCE tool could be used to 
perform the panel clean-up task. To use the FENCE tool, the 
user must place a rectangular fence on top of the vent by 
accurately selecting its vertices, setting the CLIP-MODE, 
and then applying the delete operation to the aggregate. The 
computer responds by deleting all the element segments 
within the boundary of the fence. (Since the vents are in a 
REFERENCE FILE, they will be unaffected by this operation). 
The crucial aspect of this strategy is to aggregate before 
modification, which relieves the user from operating on each 
element. However, the fence tool requires single operations 
(for example FENCE DELETE) to be independently applied to 
element aggregates, and there can be only one fence active at 
a time. 

Operation Aggregates on Single Elements 
One way to circumvent the single-operation limitation of 
the FENCE tool is to use the TRIM tool instead. With this 
tool, a user can select any number of “cutting elements” 
which define the limits to which intersecting elements will 
be deleted. Therefore the delete and the extend operation are 
aggregated for the user over all the vents. However, to 
disambiguate which segment of an intersecting line is to be 
deleted, the command requires the user to click on the 
appropriate segment of each element. 
These new powers and limitations allow for a different 
instantiation of the AM strategy. As shown in Figure 2d, 
this new tool could be used by first selecting all the vents. 
When the TRIM command is invoked, the selected vents are 
interpreted as the limits to which the lines must be 
modified. As the user selects each line, the aggregated 
operation is applied to each line by deleting and extending 
each line. Therefore, while this new command addresses the 
limitation of the fence command which does not aggregate 
operations, it forces the user to once again iterate over 
single elements. 

Operation Aggregates on Element Aggregates 
The fundamental limitation of the FENCE and TRIM tools is 
that they deal with primitive elements such as lines and 
shapes, forcing the user in this case to deal with each vent. 
Circumventing the limitations of FENCE and TRIM for 
complex iterative tasks requires a difF&ent paradigm of 
CAD, where users do not place lines and shapes, but 
domain objects such as ceiling panels and vents. As these 
objects would reside in a database, users could petiorm 
sophisticated searches using queries enabling the 
aggregation and manipulation of information in a much 
more powerful way [18]. For example, as shown in Figure 
2e, one can imagine a command that allows a user to 
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retrieve all occurrences of ceiling panels and vents that 
overlap. This aggreg& of vents and panels can be 
processed by using another command to petiorm a diflbmnce 
operation between the geometry of each panel and the vents 
that it overlaps. 
The above strategies can be organized in a matrix as shown 
in Figure 3. 

THE VALUE OF EFFICIENT STRATEGIES 
Although Figure 3 allows easy identification and 
classification of sequence and AM strategies, it remains to 
be shown that the AM strategies are actually more efficient 
for real-world tasks, and whether they have value for real 
users. To rigorously understand the effects of strategies on 
performance, we conducted an NGOMSL analysis (a variant 
of GOhgS [5] described in [12]) on all five strategies to 
perform the panel clean-up task. Each model implemented 
one of the strategies in Figure 2 down to the keystroke 
level. For example, the goal hierarchy (excluding 
keystrokes for the lowest subgoal) for the AM-Fence 
strategy (Figure 2~) is shown below: 
Goal: Edit Design 
s Goal: hqodifv Multiple Objects (Repeatfor al1 vents) 
m . Goal: Determine Strategy (In this cave, AM) 
- - * Goal: Execute Aggregate-Modify Strategy 
. . . . Goal: Aggregate Objects 
. . . . . Goal: Place Fence 
. . f * Goal: Modify Objects 
. . - - . Goal: Delete Elements 
. . . _ * - Goal: Set Clip Mode 
. . s . . . Goal: Execute Delete Command 
The execution times predicted by the NGOMSL models 
were then compared to Ll’s real-world behavior to 
determine the potential for improved productivity. 

A GOMS Comparison of Five Strategies 
The five NGOMSL models developed using GLEAN [19] 
(a GOhJS interpreter), produced estimates for the execution 
times for each of the strategies on the panel clean-up task for 
three vents. As shown in Figure 4, the execution time 
drops as more and more iterations are delegated to the 
computer. While Sequence-by-Operation saves some time 
by grouping operations, the AM strategies produce greater 
time savings by delegating iteration. 
The analysis however revealed one unexpected outcome. 
The AM-Trim model predicts a time of almost 17 seconds 
less than the AM-Fence model. This was initially puzzling 

Operations Elements Strategies I 
Single Agg. Single Agg. 

X X 
Sequence-by-Element 
Sequence-by-Operation 

x X AM-Fence 
X X AM-Trim 
X X AM-Query 

Figure 3. Five iteration strategies based on combinations of 
fimctionalities. . 

Execution Time Across Strategies 

r 80 
g 60 
i= 

40 
20 
0 

U Strategies 

Figure 4. Comparison of the predicted execution times for 
dierent strategies to perform the 3-vent panel clean-up task. 
The AM-Query strategy modifies the panel lines that overlap 
all 21 vents instead of just 3. 

as we expected the selection of individual lines to be more 
time consuming than using a fence. Investigating the details 
of this prediction revealed a general principle of these 
strategies. The models were most sensitive to an increase 
in the largest undelegated iteration. As shown in Figure 3, 
the Sequence and AM-Trim models did not support 
element aggregation and therefore were most sensitive to the 
number of panel lines. Because the AM-Fence model could 
not aggregate over operations, it was most sensitive to the 
number of vents. The AM-Query strategy aggregates over 
both elements and operations, so its model is neither 
sensitive to the number of vents nor number of lines, and 
the time shown in Figure 4 for 3 vents would be the same 
for the entire 21-vent task. The AM-Trim model and the 
Ah&Fence model are therefore in competition because the 
number of limes more or less ofBets the number of vents in 
the 3-vent task. 
To test this hypothesis, a series of AM-Trim models were 
executed while keeping the number of vents constant and 
increasing the number of lines. Figure 5 shows that the 
predicted execution time for the AM-Trim model is equal 
to that of the AM-Fence model at around 32 lines, but this 
time steadily increases as the number of lines increase. 
Therefore, when the number of lines is small, and the 
operations are restricted to cut and extend, the TRIM tool is 
advantageous. But when the number of elements increases, 
the FENCE tool produces better performance. Our 3-vent 
example task involves 11 lines, so the TRIM tool wins in 
Figure 4. 

How Ll Performed the Panel Clean-up Task 
Figure 4 shows a factor of nine reduction in time from the 
least efficient strategy to the most efficient strategy. But this 
theory-based information is only valuable to users if they 
are not already using efficient strategies. To understand the 
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Comparison Between the Execution Times 
of the AM-Trim and the AM-Fence Strategies 

50 

+!j 40 
s 
8 30 
(I) 
-E 20 
E 
I= 10 

0 I 
Number of Panel Lines in the 
3-vent Panel Clean-up Task 

Figure 5. While the execution time for the AM-Fence strategy 
remains constant, the execution time for the AM-Trim 
strategy is directly proportionate to the number of panel 
lines. 

potential for productivity improvement, we examined Ll’s 
behavior in the context of the specific application he used. 
MicroStation=’ version 4, provided aggregation of elements 
with the FENCE tool, but no tools for the AM-Trim or AM- 
Query strategies. However, although Ll had previously 
used the FENCE tool (based on our ethnographic data), he 
consistently used the Sequence-by-Operation strategy to 
delete and ex&end each lime that overlapped all of the 21 
vents. The Sequence-by-Operation model is within 11% of 
the error-t&e* real-world data. If Ll had used the AM-Fence 
strategy to cut and extend groups of lines, it would have 
taken him 40% of the time to complete the task. 
In addition, Ll committed many errors which added 20.33 
seconds to the error-free time. He committed both errors of 
omission and commission. First, he did not notice that a 
panel line located very close to the boundary of the upper 
right-hand vent overlapped the vent; he had to return to it 
after the rest of the lines had been cut and extended Second, 
he accidentally selected a panel line just above the lower 
right-hand vent instead of the actual vent boundary, thereby 
extending a panel-line to the wrong location. This error of 
commission went undetected and the drawing was 
inaccurate after he completed the task Finally, he 
committed many slips in the selection of panel and vent 
lines, which required him to repeatedly r-e-select to get 
exactly the line he wanted 
Ll could have used the AM-Fence strategy with a SNAP 
mouse option (where the cursor jumps to the closest 

* The error-free time (105.7 sec.) was calculated by subtracting 
the time Ll spent to commit, search for, and recover fium 
errors (20.33 sec.), plus unexplained behavior (0.53 sec.), 
from the total time (126.56 sec.) he spent editing the 3 vents. 

intersection thereby delegating precision to the computer) to 
accurately place the fence over the vent. With this procedure 
all element segments within the fence, regardless of how 
visually close they were to the vent boundary, would have 
been selected. The errors related to precise line selection, 
and those of not noticing lines that had to be cut and 
extended, would not have occurred. This would have 
reduced performance time and increased accuracy. 
The above analyses demonstrate two important points. 
First, when work is delegated to the computer, there am 
fewer opportunities for errors. Second, even experienced 
users such as Ll, doing extremely repetitive tasks, tend to 
miss opportunities to delegate work to the computer. 
We are not alone in observing that users do not use efficient 
strategies to delegate iteration to computers. Other studies 
in CAD [13], as well as in other domains such as 
spreadsheet use [6, 141 show similar results where users 
performing iterative tasks also missed opportunities to 
delegate iteration to computers. The above analyses of 
strategies to deal with iterative tasks, their effects on 
performance, as well as the empirical data, provided the 
basis to develop a generalized fimnework for iteration that 
might be useful across domains. 

THE ITERATION FRAMEWORK 
As discussed earlier with reference to Figure 3, the diflbmnt 
tools to assist in iteration could be characterized in terms of 
single or aggregate operators applied to single or aggregate 
elements. It is combinations of these functionalities that 
produce various designs of tools which, in turn, require 
particular strategies to exploit them. Figure 6 is an 
extension of Figure 3 to include these relationships in a 
more detailed framework. Each row defines a particular 
combination of operator and element types, which is 
directly related to what can and cannot be delegated to the 
computer. The strategies emanate from these powers and 
limitations. The Aggregate-Modify strategies (shaded gray), 
exploit the power of iteration tools by delegating iteration. 
Circumvention strategies can range from transforming a task 
decomposition as demonstrated by the move to the 
Sequence-by-Operation strategy, to using an entirely 
di&rent set of tools (moving to a different row in the 
tiework, if the tools exist). CAD tools are shown as 
examples. 
Because the framework shows the explicit relationship 
between abstract functionalities, tools, and strategies, it can 
be applied in four different ways: to identify strategy- 
instantiations in other domains, to explore the design of 
tools, to describe behavior, and to train users in the 
repercussions of strategies. 

ldenfificafion of Sfrafegy lnsfanfiafions 
Since the iteration fiumework is structured around abstract 
fimctionalities instead of specific tools, it can be used for 
any application where these particular sets of fimctionalities 
appear. For instance, using a STYLES tool on multiple 
paragraphs in a word- processor can be seen as instantiation 
of the fourth row in the matrix. The efficient strategy to 
perform such a task is to define a style with multiple 
attriiutes such as bold and italic (aggregate operations), and 
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Operations Elements Example 

Single Agg, Single Agg. CAD Tools 

Powers 

Delegated 

Limitations Efficient Strategies 

Iteration cannot be Sequence-by-Operation 

and elements 

Figure 6. The iteration fi-amework showing the relationship between abstract functionality, tools, and strategies for tasks 
requiring multiple operations on multiple elements. Precision tools (shown in white) cannot delegate iteration. This limitation 
can be partially circumvented by reorganizing the task as described by the Sequence-by-Operation strategy, but more fully 
addressed by using iteration tools with Ah4 strategies (shown in gray). Iteration tools themselves have various limitations 
which can be circumvented by using increasingly sophisticated iteration tools, or through the use of future propagation tools 
(not shown). 

apply them to multiple paragraphs (-gate elements), 
particularly ifthere are many iterations of this task. 

&$gn of NeMt Tools 
To demonstrate the use of this tiework to inform desi&, 
consider the TRIM tool. The specific operation of this tool 
was taken f?om MicroStatiorP version 5, and as shown in 
Figure 6, its limitation is that it does not allow aggregation 
over elements. 
The previous analysis overcame this limitation by going to 
an entirely new paradigm for CAD where domain-objects 
are manipulated in a dat&ase (a paradigm used by several 
archi~ research projects). However, the tiework 
pinpoints tie limitation, which inspires are-design without 
changing underlag paradigms. In this re-design, a more 
specific version of the TRIM tool could allow the selection 
of closed shapes which could act as cookie cutters on all 
elements that overlap them. Since the lines to delete would 
be encompassed by the closed shapes, this would be 
unambiguous and not require the user to identify each 
segment. Given this modification, the user could now select 
all vents and delete all overlapping elements in one step, 
effectively delegating all iteration to the computer. 

Desctiption of Eehavior 
The tiework can also be used to describe how users 
interact with a system. Since the framework provides a 
continuum of powers starting from no delegation to the 
delegation of iteration over operations and elements, one 
cm identify explicitly the level at which a particular user 
petiorms a particular task. Instructors could use this 
information to diagnose lack of knowledge on the part of the 
user and decide which concepts (e.g., aggregation of 
operations) and ski& to teach (e.g., use of the nUn4 tool). 

Design of Trtining 
We believe that there is nothing inherently wrong with the 
way new tools evolve. Often metaphors of older 
technologies are the only way to start exploring a new 
technology as its development, usage, and exploration go 
hand-in-hand. But we do think that the way tools are 
introdxed requires a more systematic approach, and when 
efEcient strategies shift, users must be made explicitly 

aware, not of just what the new tools are (as is currently 
done), but also how they directly affect the nature of tasks. 
The framework could therefore be used to design training. 
For instance, users can be taught to recognize opportunities 
to delegate work to computer powers, as well as to 
circumvent their limitations Exercises could focus on 
planning and what we have called Learning-fo-5’ee 
(elements and operations to profitably aggregate). In 
addition, users can do tasks using several different strategies 
in order to demonstrate the differences in pe&ormauce these 
strategies afford. Here, exercises could focus on execution 
and what we call Learning-to-Do. We are currently 
exploring this approach of Learning-to-See and Leaming-to- 
Do in a course on CAD for architecture graduate students. 

TOWARDS A GENERAL FRAMEWORK OF 
EFFICIENT STRATEGIES 
Clearly there are other powers of computer applications 
beyond precision and iteration. Thus, we are developing a 
larger fi-amework of which the iteration fiamework is just a 
small segment. In addition to precision and iteration, we 
are currently investigating other powers such as 
propagation, visualization, and generation as discussed 
below. 

Powers and Limits of Propagation Tools 
Although me iteration tools that operate on domain 
objects with queries are poweifid, they also have 
limitations. For instance, each time a change in the vent 
layout occurs, the user must remember to make the 
appropriate changes to panels. Furthermore, these tools can 
provide little help ifthe engineer decides to move the vents 
aj?er the panel lines have been modified. Depending on the 
way the vents are moved, the panel lines could be in 
complete disarray; some would be partially overlapping the 
vent, and some not touching them at all. This would force 
the user into a labor-intensive process to search for, and 
extend each cut line that did not terminate at a vent. 
One way to overcome these limitations is to provide the 
power of constraint propagation. With tools of propagation, 
one can imagine future systems where ceiling panels 
‘know” about their relationship to vents and vice versa, 
and any change in vents can automatically propagate to the 
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ceiling panels. However one can already expect problems to 
emerge in such systems. For instance, once ceiling panels 
are modified, they could violate some other constraint 
leading to endless cycles of propagation where the user is 
completely out of control. Tools and strategies to 
circumvent such limitations will therefore have to be 
defined. 

Powers and Limits of Visualization Tools 
One of the most important powers that make computer 
applications useful to architects is the power of 
visualization. With this power, users can visualize complex 
objects such as buildings in many difiknt ways without 
having to alter the underlying representation. However the 
screen size of most current systems puts a severe constraint 
on how much information can be viewed at the same time. 
Users often fhce the tradeoff between visual detail and the 
scope of information displayed on the screen. One way to 
circumvent this liiitation in CAD is to have two 
windows: one to always provide an overview of the entire 
building, and the other zoomed lhr into the details of a 
section. Procedures for easily navigating between these 
views aheady occur in many CAD systems like 
MicroStation~Z. However, as with the iteration strategies, 
our data showed that Ll did not use this useful 
circumvention strategy and spent unnecessary time panning 
and zooming looking for the panel lines that had to be 
modified 

Powers and Limits of Generation Tools 
While iteration and propagation can modify and replicate 
existing elements, computer applications with powetful 
algorithms can also generate new kinds of information not 
explicitly provided by the user. For example, future 
systems will enable users to explore designs generated by 
computers based on constraints and rules [lo]. However 
such systems incur huge overheads in their setup and 
modification, and appear to be usefbl mainly for recurring 
problem types (e.g., floor plans of hospitals, dorms, 
barracks). Therefore they may require a whole new set of 
strategies that have yet to be encountered. 

CONCLUSION 
Strategies of delegation and circumvention appear to be the 
core of efficient use of complex systems. Understanding the 
relationship between abstract functionality, tools, and 
strategies can assist us in the development, training, and 
efficient use of complex applications such as CAD. Our 
analysis showed that regardless of how sophisticated CAD 
tools may become in the future, it appears they will always 
have powers as well as liiitations, which users must learn 
to delegate and circumvent. 
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