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In prior work we observed that expert searchers 
follow well-defined search procedures in order to 
obtain comprehensive information on the Web.  
Motivated by that observation, we developed a 
prototype domain portal called the Strategy Hub 
that provides expert search procedures to benefit 
novice searchers.  The search procedures in the 
prototype were entirely handcrafted by search 
experts, making further expansion of the Strategy 
Hub cost-prohibitive.  However, a recent study on 
the distribution of healthcare information on the 
web suggested that search procedures can be 
automatically generated from pages that have 
been rated based on the extent to which they 
cover facts relevant to a topic.   
This paper presents the results of experiments 
designed to automate the process of rating the 
extent to which a page covers relevant facts.  To 
automatically generate these ratings, we used two 
natural language systems, Latent Semantic 
Analysis and MEAD, to compute the similarity 
between sentences on the page and each fact.  
We then used an algorithm to convert these 
similarity scores to a single rating that represents 
the extent to which the page covered each fact.   
These automatic ratings are compared with 
manual ratings using inter-rater reliability 
statistics.  Analysis of these statistics reveals the 
strengths and weaknesses of each tool, and 
suggests avenues for improvement. 
 
Introduction and motivation 

Healthcare information has become one of the most 
popular search topics on the Web (Fox & Fallows, 2003; 

Madden & Rainie, 2003).  Correspondingly, healthcare 
organizations, such as The National Cancer Institute (NCI), 
have spent millions of dollars creating high-quality 
healthcare domain portals.  These portals are written in lay 
terminology and are targeted at the health consumer, rather 
than the health professional.  The information contained in 
these portals is extensive – NCI’s site, for example, 
contains information on over 118 different cancers across 
thousands of webpages. 

Despite the popularity of healthcare information 
searching and the amount of high-quality information on 
the Web, obtaining comprehensive information for a 
healthcare topic is not a trivial task for a novice searcher. 
Recent user studies (Bhavnani, 2001; Bhavnani et al., 
2003) show that while expert searchers follow specific 
search procedures to find comprehensive information, 
novice searchers do not follow such search procedures, and 
retrieve incomplete, unreliable sources.   

To address this situation, we prototyped a new type of 
domain portal, called a Strategy Hub, which provides 
search procedures to novice users, with high-quality links 
to satisfy each subgoal.  In a user study, the Strategy Hub 
was shown to improve the performance of novice searchers 
(Bhavnani et al., 2003). 

While there is little question of the utility of the Strategy 
Hub, the prototype was very costly to build, largely 
because the search procedures were elicited from search 
experts.  Such handcrafting makes it cost-prohibitive to 
build a large-scale version of the Strategy Hub that covers 
many diseases and topics.  We therefore set out to automate 
the process of creating search procedures.   

In the next section we will discuss our prior study on the 
distribution of healthcare on the Web.  This study provides 
insights into why search procedures are so important on the 



Web, and informs the automatic generation of search 
procedures for specific healthcare topics.  We then describe 
two tools, Latent Semantic Analysis (LSA) and MEAD, 
which could be useful for automating the search 
procedures.  Then, we present the results of two 
experiments designed to automatically rate the extent to 
which a fact is covered on a webpage. In the first 
experiment, ratings were automatically generated using 
LSA, and in the second experiment, they were generated 
using MEAD. Finally, we discuss how these two 
experiments reveal the strengths and weaknesses of each 
tool in the automatic generation of search procedures, 
providing a valuable first step towards full automation of 
the Strategy Hub.     

Previous research on search procedures 
Distribution of healthcare information on the Web 

Why is it so hard for novice searchers to find 
comprehensive information about a healthcare topic, even 
when given a list of high quality healthcare sites (Bhavnani 
et al., 2003)?  To address this question, a prior study 
focused on a single healthcare topic, melanoma risk and 
prevention, and examined how facts related to this topic 
were distributed across 10 high-quality healthcare 
websites.  This study was conducted in three parts: (1) 
identify facts necessary for a comprehensive understanding 
of the topic, (2) generate a corpus of high-quality pages 
that contained the facts, and (3) determine the extent to 
which each fact was covered on each page in the corpus. 

1. Identify facts necessary for a comprehensive 
understanding of the topic. In the first phase of the 
study, two skin cancer physicians identified 14 facts that 
they felt were necessary for a patient to know in order to 
have a comprehensive understanding of melanoma risk and 
prevention.  Each fact was a single sentence with optional 
synonyms.  The doctors rated each fact for importance on a 
1-5 scale (1=not important (and will be dropped from the 
study), 5=extremely important).  Table 1 shows two 
example facts, and their mean importance.   

2. Generate a corpus of high-quality healthcare 
pages that contained the facts. To avoid noise 
introduced by inaccuracies in healthcare pages (see e.g., 

Biermann et al., 1999; Griffiths & Christensen, 2000), the 
corpus used in the study was restricted to pages from only 
the most reliable sites.  This was defined as the union of all 
sites pointed to on the MEDLINEplus melanoma page1, 
and the top sites identified in a recent study of melanoma 
information on the Web (Bichakjian et al., 2002).  After 
dropping 2 sites that were no longer online, the union 
resulted in 10 high-quality websites that contained 
melanoma information. 

Google was used to search within each of these 10 sites 
for pages that contained at least one of the 14 facts 
identified by the physicians.  This resulted in a corpus of 
189 high quality healthcare pages that had a high 
likelihood of containing information related to melanoma 
risk and prevention. 

3. Determine the extent to which each fact was 
covered on each page in the corpus. Given the facts 
and pages, the next step was to rate the extent to which 
each fact was covered on each page in the corpus.  These 
ratings were done by a graduate student at the School of 
Information, University of Michigan, using a 5-point scale: 

 
0. Fact not covered on page 
1. Fact covered in less than one paragraph 
2. Fact covered in one paragraph 
3. Fact covered in more than one paragraph 
4. Page mostly devoted to fact (although the page 

could cover other facts as well). 

To test the reliability of the ratings, a second graduate 
student was given a random sample of 25% of the pages 
(the inter-rater set), and asked to perform the same ratings.  
The agreement between the two raters was assessed in two 
ways.  To assess whether the raters agreed on the presence 
or absence of a fact on a page, Cohen’s kappa was used, 
which measures the amount that the agreement between the 
raters exceeds chance.  To measure the agreement on the 
extent to which a fact was covered on a page, Cohen’s 
weighted kappa was used, which gives “partial credit” for 
ratings that are close to each other (e.g., a disagreement of 
3 vs. 4 is not treated the same as a disagreement of 3 vs. 0).   

The raters had high agreement on both the presence or 
absence of a fact on a page (kappa=.806) and the extent to 
which a fact occurred on a page (weighted kappa=.731).  
These agreements are considered very good and good, 
respectively (Altman, 1990).   

                                                           
1 MEDLINEplus is a healthcare domain portal maintained by the 

National Libraries of Medicine and the National Institutes of Health.  The 
melanoma page (December, 2003) can be accessed at: 
http://www.nlm.nih.gov/medlineplus/melanoma.html.  

Table 1.  Two example facts related to melanoma 
risk/prevention. 

Fact Mean 
importance 

Having dysplastic nevi [or atypical moles] 
increases your risk of getting melanoma 
[or skin cancer] 

5 

Wearing sunscreen can help to prevent 
melanoma 

4.5 



Analysis of these ratings painted an interesting picture of 
the distribution of healthcare information on the web.  As 
shown in Figure 1, the distribution is highly skewed, 
meaning that many pages contain few facts while few 
pages contain many facts.  Furthermore, no one page 
contains all 14 relevant facts.   

What is causing this skewed distribution?  An 
exploratory analysis of pages revealed that pages with 
many facts appeared to provide information in less detail 
than pages with few facts.  As shown in Figure 2, pages 
with a maximum detail level of 2 or 3 had a significantly 
higher number of facts (p<.001, mean number of 
facts=5.89, SD=2.63) than pages that had a maximum 
detail level of 4 (mean=2.87, SD=2.12), or a maximum 
detail level of 1 (mean=1.86, SD=1.21).  This suggests the 
existence of three page types.  General pages are written to 
cover an entire topic, such as melanoma risk/prevention.  
They occur in the tail of the distribution, and cover many 
facts in a medium amount of detail.  Specific pages are 
written to cover a single fact.  They occur in the head of the 
distribution and cover few facts in high detail.  Finally, 
sparse pages cover other topics outside of melanoma 
risk/prevention, and happen to mention one or two 
risk/prevention facts.  These pages also occur in the head 
of the distribution, and have few facts with low detail. 

The above analysis helps to explain why search 
procedures are so important to finding comprehensive 
information on the Web.  First, because no one page 
contains all of the facts related to melanoma 

risk/prevention, users must visit more than one page to get 
all of the facts.  Second, the page-types suggest a specific 
order in which the pages should be visited.  For example, 
users should first read general pages to get a broad 
overview of the topic, followed by specific pages to obtain 
depth information about specific facts.  This general to 
specific strategy is well known by librarians (Kirk, 1974), 
and is similar to the expert search procedures provided in 
the Strategy Hub. 

This study was therefore an important first step in 
determining what the automated Strategy Hub must do: 
accurately classify webpages into general, specific, and 
sparse.  Given a corpus of high-quality pages, a list of facts 
related to a topic, and the extent to which each page covers 
each fact, a tool can be developed to automatically classify 
pages into these three page-types.  These classified pages 
can then be sequenced in a search procedure.  However, 
although the corpus of high-quality pages can be 
automatically generated, and the list of relevant facts can 
be elicited from experts with very little cost, the process of 
rating the pages for each fact is still a time consuming, 
manual process.  Therefore, in order to automatically 
generate search procedures, we must first automate this 
sub-process of rating the degree to which a page contains 
the relevant facts. 

Two natural language tools for automating 
fact coverage 

There exist several tools that can be used to analyze 
natural language text.  Below we describe two well-known 

Distribution of facts related to melanoma 
risk/prevention across healthcare pages 
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Figure 1.  The distribution of facts related to melanoma 

risk/prevention is highly skewed, and no one page 
contains all 14 facts. 

Figure 2.  Pages with a maximum detail of 2 or 3 had 
significantly more facts than pages with a maximum detail 
of 1 or 4.  This suggests the existence of three page-types: 

general pages cover many facts in a medium amount of 
detail, specific pages cover few facts in high detail, and 

sparse pages cover few facts in low detail. 



tools that are adept at rating the similarity between two 
texts.   

Latent Semantic Analysis 
Latent Semantic Analysis (LSA) is designed to capture 

the semantic similarity (similarity in meaning) between any 
pair of texts (Landauer et al., 1998).  For example, consider 
the two sentences in Table 2A.  These sentences are 
lexically similar (they have a 75% word overlap) but they 
are semantically different.  That is, they contain similar 
words, but have an entirely different meaning.  The 
sentences in Table 2B are exactly the opposite – they are 
lexically different, but semantically similar.  That is, they 
contain different words, but have a similar meaning.  
Indeed LSA rates the sentence pair in 2B far higher in 
semantic similarity than the sentence pair in 2A. 

In order to extract semantics, LSA must be trained on a 
large corpus of documents.  From this corpus, LSA builds 
an extensive matrix in which each unique word in the 
training corpus appears as a row in the matrix and each 
document appears as a column.  Finally, singular value 
decomposition is used to transform this matrix into a high-
dimensional semantic space.  Each word in the training 
corpus can be represented as a vector in this semantic 
space; this vector can be thought of as the “average” 
meaning of a word. 

The similarity of any two words in the training corpus 
can then be expressed as the cosine of the angle between 
the two vectors.  Importantly, this similarity calculation is 
not limited to single words.  In fact, any combination of 
words in the training corpus can be represented as a vector 
in the semantic space.  Therefore, LSA can calculate the 
similarity between pairs of phrases, sentences, paragraphs, 
or documents, as long as they contain words in the training 
corpus.   
Because a semantic space can only represent words in the 
original training corpus, the calculated similarity of two 
inputs is highly dependent on whether or not the inputs 
contain words from the training corpus.  Two phrases may 
be semantically similar, but LSA will compute an 
inaccurate similarity if either or both phrases contain any 
words that LSA does not recognize (e.g., words with zero 

frequency in the semantic space).  Avoiding such 
inaccuracies is an important constraint on proper use of 
LSA (Landauer 2002).   
However, given the right semantic space, LSA has been 
shown to be remarkably effective.  For example, Landauer 
et al (1998) created several semantic spaces from the set of 
scientifically sampled documents used by Touchstone 
Applies Sciences Association (TASA) to create The 
Educator’s guide to word frequency (Zeno et al., 1995).  
The most advanced space simulates the general reading 
knowledge of college freshmen.  Using appropriate 
semantic spaces LSA was able to do reasonably well on a 
variety of tasks, such as the TOEFL test (Landauer et al., 
1998).  In other experiments, a semantic space was created 
using three college-level psychology textbooks, and tested 
using multiple-choice exams given in introductory 
psychology courses at two universities.  Although LSA did 
not score as well as students in the classes, it did well 
enough to pass the class according to the professor’s 
grading criteria. Other uses of LSA include modeling a 
user’s behavior at on a website (Blackmon et al, 2002, 
2003). 

LSA also has a clear application to Information Retrieval 
(IR).  For example, Google, the most popular IR system on 
the Web today, is lexically-based, meaning that it returns 
pages that contain words in the user’s query.  In contrast, 
LSA has been used to create semantic-based IR systems, 
which can return pages with words that have similar 
meanings to the user’s query (Dumais et al., 1988; 
Deerwester et al, 1990; Dumais, 1994), even if the lexical 
overlap between the page and the query is quite small.  

The utility of LSA has therefore been demonstrated from 
a theoretical and practical point of view.  In our 
experiments, we used LSA in a novel way to score the 
extent to which a fact is covered by a webpage.   

MEAD 
MEAD is a tool developed at the University of Michigan 

to automatically summarize multiple document clusters 
(Radev et al, 2000; Radev et al., 2001b)2.  To create a 
summary, MEAD first determines the cluster centroid, 
which is a group of words that are central to all documents 
in the cluster.  MEAD then computes the similarity of each 
sentence in the cluster to the centroid, and chooses the 
most salient sentences for use in the summary.  This 
process is called centroid-based summarization. 

In addition to centroid-based summaries, MEAD can 
create query-based summaries as well.  Rather than scoring 
each sentence based on its similarity to a centroid, this 
method scores each sentence based on its similarity to a 

                                                           
2 MEAD is public-domain software, see 

http://www.summarization.com/mead (accessed December, 2003).  The 
results reported in this paper were obtained using MEAD version 3.07. 

Table 2. Examples of (A) sentences that are syntactically 
similar but semantically different, and (B) sentences that 

are syntactically different but semantically similar. 

A  I kicked the ball. 
I kicked the bucket. 

B  I kicked the bucket. 
I died. 



given query.  The query is simply a sentence or two that 
describes the topic on which the user wishes to summarize. 

Whether MEAD is computing a centroid-based summary 
or a query-based summary, it first computes the similarity 
score between each sentence and the target, which is either 
the cluster centroid, or the query.  As shown in Figure 3, 
the similarity score is based entirely on the word overlap 
between the sentence and the target.  Because the MEAD 
similarity score is computed using only the lexical 
composition of the sentence and the target, there is no 
analog to a semantic space in MEAD. 

 MEAD has been used to create two web-based 
summarization tools, NewsInEssence (Radev et al., 2001a), 
and WebInEssence (Radev et al., 2001c).  NewsInEssence3 

summarizes related news articles from multiple online 
news sources, including www.cnn.com and 
www.msnbc.com.  WebInEssence is an IR system that uses 
MEAD to automatically cluster and summarize similar 
webpages returned from a user’s query.   

Both of these example systems use MEAD to extract 
relevant sentences based on their salience to a centroid or 
user-defined query.  However, in our experiments, we used 
MEAD to score the extent to which a page covers a set of 
facts, based on the salience of each sentence in the page to 
each fact.  

Experiment to automatically rate pages 
Overview of experiments 

MEAD and LSA each provide a method of computing 
the similarity between a fact and a sentence.  However, 
they are not immune to common problems of natural 
language systems, including the extent to which the system 
must be trained, and the extent to which the input must be 
pre-processed prior to using the tool.  In general, these 
problems are approached incrementally, where the results 
of one experiment suggest ways to modify the training or 
input in order to improve the results of the next 
experiment.  Therefore, the experiments presented in this 
section are only the first in a planned series of experiments 
designed to learn the strengths and weaknesses of LSA and 
MEAD, and ultimately to exploit the strengths to 
automatically rate the extent to which a fact is covered on a 
page.  

                                                           
3 NewsInEssence can be accessed at http://www.newsinessence.com 

(accessed December, 2003) 

Experiments to automatically rate pages 
In our experiments, each tool was used to rate the 

similarity between a fact and each sentence page.  An 
algorithm was then used to convert these similarity scores 
into a single rating denoting the extent to which the fact 
was covered on the page.  These ratings were then 
compared with the manual ratings in the distribution study 
described above.   

Data 
Determining the extent to which a fact is covered on a 

page requires two inputs: (1) a list of facts, and (2) a corpus 
of pages.  Both of these inputs were identified in the 
manual distribution study discussed above, and were kept 
the same for this study. 

However, the webpages required some pre-processing in 
order to convert them into a format that each tool could 
understand.  First, the webpages were stripped of their 
HTML content using a custom script.  This content was 
stored in a database, and subsequently parsed into 
paragraphs and sentences.  Finally, the content was 
converted into XML files for use in MEAD.   

After pre-processing, the corpus was split into two sets.  
The inter-rater set contained 25% of the pages, and was 
the same inter-rater set used in the manual distribution 
study described earlier.  The non-interrater set contained 
the remaining 75% of the corpus.  We split the pages into 
these two sets because only the pages in the inter-rater set 
were rated by both raters in the distribution study.  
Therefore, in order to compare the automatic ratings with 
both manual raters, we tested the automatic tools using 
only pages in the inter-rater set.   

Method 
LSA requires a semantic space in order to compute 

similarity scores.  In our experiments, we used two separate 
semantic spaces.  First, in order to obtain a baseline metric, 
we used the college-level semantic space (described in the 
description of LSA).  We chose this space knowing fully 
well that melanoma is a specialized topic, and that this 
general space might not contain several crucial words and 
phrases related to melanoma.  We therefore also created a 
melanoma-specific semantic space.  This space was created 
using 128 webpages related to melanoma, obtained from 
the 10 high-quality sites used in the distribution study.  
Because the pages in the inter-rater set were used to the test 
the tools, to avoid circularity we did not use these pages to 
create the space.  In order to keep separate the ratings in 
the general semantic space from the ratings in the 

(Total overlapping words)  
Similarity =

sqrt((total words in sentence) * (total words in target))
 

Figure 3.The function used by MEAD to calculate the similarity between a sentence and the target.  



melanoma space, we will use the term LSA_general to refer 
to LSA ratings in the general space, and LSA_melanoma to 
refer to ratings in the melanoma space.   

As discussed in the LSA section above, these semantic 
spaces are necessary for LSA to determine the meaning of 
a phrase.  On the other hand, as shown in Figure 3, MEAD 
simply computes the word overlap between two phrases, 
and therefore does not require a semantic space.  

After choosing the semantic spaces for LSA, we used 
each tool to compute the similarity between each fact and 
each sentence in the inter-rater set, resulting in over 65,000 
similarity scores for each tool.  We then used these 
similarity scores to rate the extent to which a fact was 
covered on a page according the 5-point scale used in the 
distribution study  

0. Fact not covered on page 
1. Fact covered in less than one paragraph 
2. Fact covered in one paragraph 
3. Fact covered in more than one paragraph  
4. Page mostly devoted to fact (although the page 

could cover other facts as well) 

Figure 4 gives a brief description of the algorithm used to 
convert the similarity scores into ratings. The complete 
algorithm is shown in the appendix. 

As shown in Figure 4, $similarity_threshold is the 
value at which we consider a sentence to match a fact, and 
is a key input to the algorithm.  Therefore, before we could 
use the algorithm to rate pages, we had to learn the optimal 
$similarity_threshold for each tool.  To learn this 
optimal value, we conducted a small learning experiment. 

 To conduct the learning experiment, we first selected 10 
random pages from the non-interrater set to be used as a 
learning set.  We then used the above algorithm to rate 
each of the pages in the learning set for various values of 
$similarity_threshold.  The optimal value for 
$similarity_threshold is the value at which the 
automatic ratings best match the manual ratings.  Thus, we 
chose the value that maximized the weighted kappa 
between the automatic ratings and the manual ratings for 
each tool.   

 Given this optimal value for 
$similarity_threshold, we ran the algorithm for each 
tool, and computed two statistics to assess the agreement 
between the automatic ratings and the manual ratings.  (1) 
To assess whether the raters agreed on the presence or 
absence of a fact on a page, we used Cohen’s kappa. (2) 
To measure the agreement on the extent to which a fact was 
covered on a page, we used Cohen’s weighted kappa, 
which gives “partial credit” for ratings that are close to 
each other.  The above kappa statistics are the standard 
method to calculate inter-rater reliability.  They are a better 
estimate of the true reliability between two raters than 
simply the percentage agreement because kappa takes into 
account the probability that the raters will agree by chance.  

Results 
Learning experiment. As determined by the learning 

experiment, the optimal $similarity_thresholds 
were:  LSA_general: .55; LSA_melanoma: .45; MEAD: 
.25.   

Agreement on whether or not a fact was covered on 
the page. Table 5 shows the agreement between the 
automatic and the manual ratings for whether or not a fact 
was covered on a page, assessed using Cohen’s kappa 
(percentage agreements are in parentheses). As shown, 
LSA_melanoma had the highest agreement with the 
manual raters, with kappa values close to .3. However, this 
agreement was considerably lower then the agreement 
between the two manual raters (kappa=.806).  The 
agreement for MEAD was lower than LSA_melanoma, but 
approximately double that of LSA_general. 

Agreement on the extent to which a fact is covered 
on a page. Table 6 shows the agreement between the 
automatic and the manual ratings for the extent to which a 
fact was covered on a page, assessed using Cohen’s 
weighted kappa (percentage agreements are in 
parentheses).  Again, LSA_melanoma had the highest 
agreement with the manual raters with weighted kappa 

For a given fact and page:

For each paragraph, determine the percentage of
sentences that "match" the fact - sentences
whose similarity with the fact is greater than
some threshold, $similarity_threshold.

If more than 2/3 of the sentences
in a paragraph match the fact,
then the paragraph is devoted to
the fact.

Rating=0 if 0 sentences match the fact

Rating=1 if at least 1 sentence matches the
fact, but 0 paragraphs match the fact

Rating=2 if only one paragraph matches
the fact, and no other sentences match
the fact

Rating=3 if more than one paragraph
matches the fact

Rating=4 if more than 2/3 of the paragraphs in a
page match the fact 

Figure 4. Brief description of the algorithm used to 
calculate the extent to which a fact is covered on a page, 

given similarity scores between the fact and each 
sentence on the page.  The complete algorithm is given in 

Appendix 2. 



values of .235 and .319.  Again, however, this agreement 
was considerably lower then the agreement between the 
two manual raters (weighted kappa = .731).  Finally, the 
weighted kappa for MEAD was approximately double that 
of LSA_general. 

Discussion 
Kappa measures the extent to which the agreement 

between two raters exceeds chance agreement.  Therefore, 
if kappa = 0, the agreement is simply that which would be 
expected by chance.  In our experiments, all of the kappa 
and weighted kappa values were greater then 0, meaning 
that the agreement between the automatic ratings and the 
manual ratings is at least better than the agreement that we 
would expect by chance.   

Furthermore, it is pertinent to note that even the manual 
raters did not agree 100%.  In fact, the kappa values for the 
manual raters range between .734 and .806. Because it is 
unrealistic to expect that an automatic tool will perform as 
well as a human, even this level of agreement is probably 
unattainable. In this light, the agreement between 
LSA_melanoma and the manual raters is actually quite 
encouraging, and suggests that automatically rating the 
extent to which a fact is covered on a page is indeed 
possible.  

However, using the current tools and algorithm, the 
agreement between the automatic ratings and the manual 
ratings is still too low.  Although there is no significance 
test for kappa, Altman (1990) suggests that kappa values 
between 0 and .2 should be interpreted as poor, while 
kappa values between .2 and .4 should be interpreted as 
fair.  According to these guidelines, the agreement between 
the LSA_melanoma ratings and the manual ratings can be 
interpreted as “fair” in both Tables 5 and 6, as can the 
agreements between MEAD and the manual raters shown 
in Table 5.   

Although we expected low agreement for LSA_general, 
we were surprised that the agreement for MEAD was so 
much higher than the LSA_general.  After all, LSA 
employs a complicated algorithm to get at passage 
meaning, rather than relying solely on lexical composition 

as MEAD does.  However, a brief example will illustrate 
why this occurred.  For clarity, we will use an example of a 
single word, however the discussion applies to phrases as 
well. 

As discussed in the prior work section, LSA represents 
any word or collection of words as a vector in a semantic 
space.  This vector is supposed to embody the meaning of 
the word, and can only be computed if the word itself is 
contained in the space.  Thus, the similarity between two 
words can only be computed if both words are contained in 
the semantic space.   

For example, consider the word “dysplastic.”  A 
dysplastic, or atypical, mole is a mole that has many of the 
same physical characteristics as a melanoma, but is not 
cancerous.  However, dysplastic moles seem to have a 
greater chance than regular moles of becoming melanomas, 
so having dysplastic moles is a risk factor for melanoma 
(see Table 1).   

But the word dysplastic is not in the college-level general 
semantic space.  This means that LSA_general cannot 
compute the similarity between “dysplastic” and 
“atypical”, because it is unable to determine the meaning of  
“dysplastic” (Landauer, 2002).  Even though the two words 
are semantically very close, the similarity score between 
the two will be NULL (considered 0 by our algorithm).  In 
fact, the similarity between “dysplastic” and “dysplastic” is 
NULL in LSA_general, even though they are the same 
word! 

Now consider the same example in MEAD (refer to the 
formula in Figure 3).  Again the similarity between 
“dysplastic” and “atypical” would be 0, because even 
though the words are semantically similar, the two phrases 
have no words in common.  However, “dysplastic” and 
“dysplastic” would have a similarity score of 1, because 
every word in one phrase is contained in the other phrase. 

This suggests that MEAD will outperform LSA when 
many of the input words are not represented in the 
semantic space.  This seems to be the case with 
LSA_general and our corpus.  Even though the input pages 
were written for consumers, they still contained language 

Table 5. The agreement for fact presence/absence on a 
page.  The table shows the kappa values for inter-rater 
reliability, with the observed percentage agreement in 

parentheses.   
 Manual-1 Manual-2 

Manual-1 1 .806 (96%) 
Manual-2 .806 (96%) 1 
LSA_general .102 (60%) .096 (60%) 
LSA_melanoma .322 (87%) .295 (85%) 
Mead .245 (83%) .221 (81%) 

Table 6. The agreement for the extent to which a fact was 
covered on a page.  The table shows the weighted kappa 

values for inter-rater reliability, with the observed 
percentage agreement in parentheses. 
 Manual-1 Manual-2 

Manual-1 1 .734 (93%) 

Manual-2 .734 (93%) 1 

LSA_general .093 (56%) .072 (54%) 

LSA_melanoma .319 (84%) .235 (81%) 

Mead .197 (80%) .151 (77%) 



specialized to melanoma (e.g., “dysplastic”).  Because this 
language was not in the college-level space, LSA_general 
ignored it, leading to low similarity scores even for closely 
matching sentences.   

This situation should have been addressed by the 
melanoma-specific semantic space.  Indeed, the agreements 
between LSA_melanoma and the manual raters were 
considerably higher than the agreements between the 
manual raters and LSA_general or MEAD.  However, even 
the highest agreement between LSA_melanoma and the 
manual raters was still relatively low.  To help understand 
why this agreement was so low, we examined the 
frequency table of ratings between LSA_melanoma and 
Manual-2. 

The frequency table is shown in Table 7.  Each cell in the 
table displays the number of times that a pair of ratings 
occurred.  For example, the top-left cell shows the number 
of times that both raters rated a 0.  Cells along the main 
diagonal represent perfect agreement between the raters.  
The greater the distance a cell is from the main diagonal, 
the greater the disagreement between the raters.  Cells 
below the main diagonal are cases where LSA_melanoma 
underrated the page, and cells above the diagonal are cases 
where LSA_melanoma overrated the page, compared to 
Manual-2. 

The frequency table therefore allows us to examine the 
nature of the disagreements in more detail.  For example, 
as shown in the first row and first column of the table, the 
majority of the disagreements were on the presence or 
absence of a fact on the page.  The first row shows that 
there were 46 instances where LSA_melanoma rated a 
page as containing a fact (rating > 0) when the manual rater 
rated the page as not containing the fact (rating = 0).  
Similarly, the first column shows that there were 42 
instances where the manual rater rated the page as 
containing a fact when LSA_melanoma rated a page as not 
containing the fact.   

The remainder of the table shows the frequency of ratings 
when the raters agreed that a fact was covered on a page.  

As shown, when both raters agreed that a fact was covered 
on a page, the disagreements on the extent of the coverage 
tended to be slight.  Indeed, 70% of these disagreements 
were by only 1 point.  Because the disagreements tended to 
be on whether or not a fact was covered on a page rather 
than on the extent to which a fact was covered on a page, 
our future research will attempt to improve the agreement 
on whether or not a fact is covered on a page.   

Future research 
We are currently exploring ways to improve the 

agreement on whether or not a fact is covered on a page, 
For example, we are exploring how to combine the scores 
from LSA_melanoma, LSA_general, and MEAD.  These 
tools had relatively low agreement on whether or not a fact 
was covered on a page, which implies that when 
LSA_melanoma rated a fact as covered on a page, 
LSA_general or MEAD may not have, and vice versa.  The 
ratings might therefore be improved by combining the 
three scores.  One way to combine the scores would be a 
linear combination of the three, with the optimum weights 
for each score learned in much the same way as the 
optimum $similarity_threshold.  Another way would 
be to consider a sentence as matching a fact if at least one 
tool matched the fact (or if at least two tools matched, etc).  

In addition to combining the scores, we can also improve 
the agreement by improving the individual ratings.  It is 
worth noting that the task we gave LSA is difficult.  LSA 
performs best when input texts are long (Landauer et al., 
2000), but the facts (see Table 1) contain relatively few 
words.  Furthermore, the facts are also sometimes very 
similar to each other.  While humans can use logic and 
syntax to distinguish between these similar facts, LSA 
cannot. Therefore, the LSA ratings may improve if facts 
are elaborated into one or more paragraphs that make facts 
more distinct and less similar to each other. 

This elaboration should also decrease the importance of 
low-frequency words in the facts.  Low frequency words 
are words in the input text that appear less than 15 times in 
the semantic space.  There were 9 low-frequency words in 
the LSA_general space: ABCDs, atypical, dysplastic, 
melanoma, nevi, Pigmentosum, sunscreen, UV, and 
Xeroderma.  On the other hand, there were 22 low-
frequency words in the LSA_melanoma space, including 
green, seeking, itching, and match.  Thus, the low 
frequency words in the general space tended to be specific 
to melanoma, while the low frequency words in the 
melanoma space tended to be general in nature.  To address 
this situation, we are exploring the creation of a general 
healthcare space created from the medical encyclopedia on 
MEDLINEplus.  We believe that this space will include 
many general words, as well as many medical terms.  

Finally, we may believe that we can improve the MEAD 
results using a just-released, trainable version of MEAD 

Table 7. The frequency table for LSA_melanoma and 
Manual-2 shows that the majority of the disagreements 
were on whether or not a fact was covered on a page. 

 LSA_melanoma  
Manual-2 0 1 2 3 4 

0 473 27 16 3 0 

1 24 1 12 3 0 

2 8 1 3 1 0 

3 8 1 1 0 0 

4 2 0 3 1 0 



that was not available for our original experiments.  We 
plan to train this tool using the same corpus that was used 
to create the melanoma-specific semantic space.  Such 
training will make the tool more sensitive to the melanoma-
specific content in the webpages, allowing it to more 
accurately distinguish between lexically similar phrases.  
This should increase the reliability of the ratings. 

As discussed in the introduction, our ultimate goal is to 
automate the creation of the Strategy Hub.  When using 
this automatic tool, a user will first select a healthcare topic 
(such as melanoma risk/prevention).  The system will then: 
(1) retrieve a list of relevant facts from a physician-
supplied database, and a list of high quality websites,  (2) 
use Google to find pages from the high quality sites that 
contain at least one of the facts, (3) use the tools and 
algorithm described in this paper to rate the extent to which 
the facts are covered in the pages, (4) classify pages into 
general, sparse and specific, and finally, (5) present pages 
to the user in a pre-determined sequence, such as from 
general to specific.  This tool should help novice searchers 
to obtain comprehensive healthcare information. 

Conclusion 
We began with a description of a prototype system called 

the Strategy Hub, which provides expert search procedures 
to novice users.  However, because these search procedures 
were manually determined by experts, the creation of 
future Strategy Hubs is cost prohibitive.  We therefore set 
out to automatically generate search procedures.  A study 
on the distribution of healthcare information on the Web 
provided a roadmap towards this automation.  The study 
showed that that there seem to be three types of pages on 
the Web: general, specific, and sparse.  The existence of 
these page-types suggests a general-to-specific search 
procedure, in which a user visits general pages to get an 
overview of the topic, followed by specific pages to get 
detailed information about specific facts.   

Automatically generating search procedures, then, 
requires automatically identifying general and specific 
pages, which requires automatically rating the extent to 
which a fact is covered on a page.  Towards this end, we 
described how we used MEAD and LSA to determine the 
similarity between a sentence and a fact.  Furthermore, we 
described the algorithm used to covert these similarity 
scores into a rating of the extent to which the fact was 
covered on a page. 

To test whether these automatic ratings agreed with the 
manual ratings in the distribution study, we computed 
inter-rater agreement statistics.  At best, the agreements 
between the automatic ratings and the manual ratings were 
fair.  However, they exceeded chance in all cases, which 
encourages us that reliable automatic ratings of pages 
should be possible.  Examining these ratings revealed the 
strengths and weaknesses of each tool, and suggested 

methods to improve the agreement with the manual raters.  
Future work will attempt to improve these ratings by 
combining the sentence similarity scores from each tool, 
and by modifying the inputs to improve the sentence 
similarity scores.  The ultimate goal is to develop automatic 
tools that will guide users in finding accurate and 
comprehensive information in vast, unfamiliar domains 
such as healthcare. 
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Appendix: Algorithm used to rate pages 
 

• Obtain list of facts necessary for a comprehensive understanding of the topic. 
Let TotalFacts denote the total number of facts.  The ith fact is referred to as facti 

  
• Parse each page into paragraphs and sentences. 
 

Let TotalSentencesInPage denote the total number of sentences in the page. 
 

Let TotalParagraphsInPage denote the total number paragraphs in the page 
 
Let sentencej,k. denote the jth

 sentence in the kth paragraph. 
 
Let TotalSentencesInParagraph(k) denote the number of sentences in paragraphk. 

 
• Let SematicProximityForSentence(i,j,k) denote the semantic proximity (cosine 

angle) between facti and sentencej,k 

• Let SimilarityThreshold be the semantic proximity score above which a sentence 
is considered to match a fact. 

• If SematicProximityForSentence(i,j,k) >= SimilarityThreshold, then facti 
matches sentencej,k.  

 
Let TotalMatchedSentencesInParagraph(i,k) denote the total number of 
sentences in paragraphk that matches facti. 
 
Let TotalMatchedSentencesInPage(i) denote the total number of sentences in the 
page that match facti.  
 
Let ProportionOfMatchedSentencesInParagraph(i,k) denote the proportion of 
sentences in paragraphk that match facti.  This can be computed by:  

TotalMatchedSentencesInParagraph(i,k)/

TotalSentencesInParagraph(k).   
 

• If ProportionOfMatchedSentencesInParagraph(i,k) > .66 then Paragraphk is 
considered to be devoted to facti  

 
Let TotalMatchedParagraphsInPage(i) denote the total number of paragraphs in 
the page that are devoted to facti.  
 
Let ProportionOfMatchedParagrpahsInPage(i) denote the proportion of 
paragraphs in the page that are devoted to facti.  This can be computed as: 

TotalMatchedParagraphsInPage(i)/TotalParagraphsInPage.   
 
 

• Let Ratingi denote the detail level at which a page covers a fact, based on the 



following scale: 

If facti is not matched in page, then Ratingi =0 

If less than 1 paragraph is devoted to facti, then Ratingi =1 

If one paragraph is devoted to facti, then Ratingi =2 

If more than 1 paragraph is devoted to facti, then Ratingi =3 

If entire page is mostly devoted to facti, then Ratingi =4 
 

This can be computed as follows: 
 

If TotalMatchedSentencesInPage(i)=0, then Ratingi =0  
(There are no sentences in the page that match facti) 

 
Else, if TotalMatchedParagraphsInPage(i)=0, then Ratingi =1  
(There is at least one sentence, but not an entire paragraph devoted to facti) 

 
Else, if TotalMatchedParagraphsInPage=1 

 
 Let MatchedParagraph denote the paragraph that is devoted to facti 

 
If TotalMatchedSentencesInParagraph(i,MatchedParagraph)= 
TotalMatchedSentencesInPage(i), then Ratingi =2  
(There is one paragraph devoted to facti and no sentences outside of this 
paragraph match facti) 

 
Else Ratingi =3  

(There is one paragraph devoted to facti, and at least one sentence 
outside of this paragraph that also mathches facti) 

  
Else 

If ProportionOfMatchedParagraphsInPage(i)>.66, then Ratingi =4  
(At least 2/3 of the paragraphs in the page are devoted to facti, so the 
page is mostly devoted to facti) 

   

Else, Ratingi =3  
(At least 2 paragraphs are devoted to facti, but less than 2/3 of the total 
paragraphs on the page are devoted to facti) 

 
 

 


