
 

How Cytokines Co-occur across Rickettsioses Patients: From Bipartite Visual 
Analytics to Mechanistic Inferences of a Cytokine Storm  

Suresh K. Bhavnani, PhD1, Justin Drake, BS1, Gowtham Bellala, PhD2, Bryant Dang, BS1,             
Bi-Hung Peng, PhD3, Jose Antonio Oteo, MD5, Paula Santibañez-Saenz, BSc5,                                   

Shyam Visweswaran, MD, PhD4, Juan P. Olano, MD3  
1Inst. for Translational Sciences, Institute for Human Infections and Immunity, University of Texas 

Medical Branch, Galveston, TX; 2Hewlett Packard Laboratories, Palo Alto, CA; 3Department of 
Pathology, University of Texas Medical Branch, Galveston, TX; 4Department of Biomedical 

Informatics, University of Pittsburgh, Pittsburgh, PA; 5Hospital San Pedro - Centro de 
Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain

Abstract 

Several intersecting host, vector, and environmental factors have led to a re-emergence of rickettsial diseases such 
as Mediterranean Spotted Fever (MSF), and Dermacentor spp.-borne necrosis-erythema lymphadenopathy 
(DEBONEL). Some rickettsiae produce diffuse endothelial infection and systemic microvascular leakage leading in 
some cases to high morbidity and mortality. Unfortunately, little is known about the molecular pathways triggered 
by these diseases in humans. We therefore analyzed how candidate cytokines co-occur across acutely-ill patients 
with either a localized (DEBONEL), or a systemic (MSF) form of rickettsiosis, using bipartite visual analytics. The 
results revealed a network core consisting of a small set of MSF patients exhibiting high expressions of cytokines 
implicated in microvascular leakage, endothelial repair, and pro-inflammatory immune responses, and a network 
periphery consisting of a mixture of MSF and DEBONEL patients with relatively lower overall cytokine expressions. 
These results provide evidence of pathways triggered by rickettsiae in humans, and a testable hypothesis for the 
mechanisms in a rickettsia-induced cytokine storm with the translational goal of identifying therapeutic targets. 

Introduction 

Bacteria belonging to the genus Rickettsia cause a range of rickettsioses in humans including Mediterranean spotted 
fever (MSF), Rocky Mountain spotted fever (RMSF), and Dermacentor spp.-borne necrosis-erythema 
lymphadenopathy (DEBONEL). Transmitted through infected arthropods, most rickettsioses result in infection of 
the microvascular endothelium leading to increased microvascular permeability1. The diseases vary from localized 
forms such as DEBONEL, to diffuse infection of the microvascular endothelium resulting in mortality rates of 2-3% 
in MSF, and 20-25% in untreated cases of RMSF in the US. 

Unfortunately, much remains to be discovered about the pathogenesis underlying rickettsial diseases in humans 
because most of the research has (1) been conducted in vitro and in mouse models, and (2) used univariate methods 
(e.g., t-test) to analyze potential biomarkers. For example, several mouse models have been developed for spotted 
fever and typhus group rickettsiae, leading to hypotheses about candidate biomarkers such as IFN-γ, TNF-α, and IL-
1β2 in humans. However, to the best of our knowledge, no studies have used multivariate methods to analyze the 
pathogenetic role of cytokines and chemokines involved in the human immune response to rickettsiae. Such 
multivariate analysis could help to identify how multiple biomarkers act in concert, such as in a cytokine storm3. 

Given the emergence and re-emergence of several rickettsial diseases due to multiple environmental and biological 
factors2, there is an urgent need to understand the complex multivariate nature of the disease with the goal of 
enabling the identification of molecular pathways and therapeutic targets. To address this gap, we used bipartite 
visual analytics to visualize and quantitatively analyze the multivariate co-occurrence of candidate cytokines across 
patients with a mild form (DEBONEL), and a systemic form (MSF) of rickettsiosis. 

Methods 

Our research began with the question: How do cytokines (implicated in rickettsial mouse models and in vitro 
models) co-occur across MSF and DEBONEL patients? To address our research question, we made critical 
decisions related to data selection, and data analysis as discussed below:  

Data Selection. Our study was based on 49 DEBONEL, and 36 MSF patients that were diagnosed using serological 
assays (IFA) and/or PCR detection of rickettsial DNA amplicons from blood samples.  Serum samples were 
collected between 0-20 days after symptoms first appeared, and a bioplex analysis was conducted to measure 26 
candidate cytokines. The cytokine levels for both diseases were determined using a single standard curve.  
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Data Analysis. Our analysis consisted of two steps: (1) exploratory visual analysis to identify emergent bipartite 
relationships between patients and cytokines; and (2) quantitative analysis suggested by the emergent visual 
patterns. This two-step method was motivated by our earlier studies4-6, which have demonstrated that bipartite 
relationships can reveal different patterns each prompting the use of quantitative methods that make the appropriate 
assumptions about the underlying data. 

1. Exploratory Visual Analysis was conducted using network visualization and analysis7. Networks are 
increasingly being used to analyze a wide range of molecular phenomena such as gene and protein-protein 
interactions8-9, and to assess their relationships to diseases, symptoms, and syndromes. A network consists of nodes 
and edges; nodes represent one or more types of entities (e.g., patients or cytokines), and edges between the nodes 
represent a specific relationship between the entities. Figure 1 shows a bipartite network where edges exist only 
between patients and cytokines.  

Edge weights in the network were used to represent the strength of the cytokine expression values for each patient-
cytokine pair. Because the cytokines had different ranges, we used the min-max normalization method (which does 
a linear mapping of each cytokine value to range from 0-1, and therefore preserves the relative distances between 
values to enable comparison). As shown in Figure 1, the edge thicknesses were drawn to be proportional to these 
normalized cytokine values. Node diameter was used to represent the sum of the edge weights connected to it (also 
referred to as the weighted degree centrality). This enabled a rapid visual inspection to determine for example, 
which patients have overall high aggregate cytokine values, and how such patients relate to the rest of the network. 
Finally, the node shape was used to represent phenotype (triangles=MSF, squares=DEBONEL, circles=cytokines), 
and node color was used to represent members of a cluster based on hierarchical cluster analysis. 

Global patterns between patients and cytokines in the network were visualized and analyzed using the Kamada-
Kawai layout algorithm10 in Pajek (version 3.02). As shown in Figure 1, the algorithm pulls together nodes that are 
strongly connected, and pushes apart nodes that are not. This algorithm is fast but approximate and is well-suited for 
medium sized networks consisting of between 100-1000 nodes. The result is that nodes with a similar pattern of 
connections (e.g., PDGF and MIP-1β in the middle of the network in Figure 1) are placed close to each other. 

A key advantage of a network representation is the simultaneous visualization of multiple raw values (patient-
cytokine associations, cytokine values), aggregated values (sum of cytokine values), and emergent global patterns 
(clusters) in a uniform visual representation. Such a representation enables the rapid generation of hypotheses based 
on complex multivariate relationships, which can be verified through appropriate quantitative methods. 

2. Quantitative Analysis was conducted using three measures to verify the insights derived from the exploratory 
visual analysis. These methods were selected based on their appropriateness to the emergent patterns in the network. 

(a) Agglomerative Hierarchical Clustering. Because the network layout suggested a core-periphery topology 
(nodes with high overall edge weights in the core, and nodes with low overall edge weights in the periphery7) for 
patients and for cytokines, we used the agglomerative hierarchical clustering method. The clustering was done using 
the Manhattan dissimilarity measure with the Ward linkage function, and the number of clusters and their 
boundaries were determined based on natural breaks in the patient and cytokine dendrograms. The dendrograms 
were also combined with the heatmap to aid in the visual analysis of the results.  

(b) Clusteredness. To test whether the clusters in the network could have occurred by chance, we compared the 
variance, skewness, and kurtosis of the dissimilarities in the data, to 1000 random permutations of this data. For 
each network permutation, we preserved the size of the network, in addition to the edge weight distribution of each 
patient when analyzing the patient dendrogram, and the edge weight for each cytokine when analyzing the cytokine 
dendrogram. Significant breaks in the rickettsioses patient, or cytokine dendrograms would result in a significantly 
larger variance, skewness, and kurtosis of the dissimilarity measures, compared to the same measures generated 
from the random networks.  

(c) Weighted Degree Centrality. To test whether the patients in the network core had a higher overall cytokine 
expression, we calculated the weighted degree centrality7 for each patient node by adding its normalized cytokine 
expression across all cytokines. The Mann Whitney U test was then used to compare the weighted degree centrality 
of the patients in the core, to those in the periphery. The same measure was used to compare the weighted degree 
centrality of the cytokines in the core compared to cytokines outside the core. Furthermore, to characterize the 
continuous nature of the core-periphery topology, we plotted the relationship between the weighted degree centrality 
of the nodes (using 5 equal bins over the range 0-15), and the proportion of MSF (# MSF patients in each bin / # 
total MSF), or DEBONEL patients (# DEBONEL patients in each bin / # total DEBONEL) in each bin. 
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Results 

Patient Clusters. As shown in Figure 1, the network layout revealed a core-periphery topology, where there were a 
few patients with high overall cytokine expression in the central core of the network (henceforth referred to as the 
patient core), and many patients with low overall cytokine expression in the periphery (henceforth referred to as the 
patient periphery).  

The above topology was quantitatively verified through agglomerative hierarchical clustering. The vertical 
dendrogram in Figure 2 shows that there exist mainly two clusters: a small cluster consisting of 12 (33.3%) MSF 
patients in the core, and the remaining 24 (66.7%) MSF and 49 (100%) DEBONEL patients were scattered at 
different distances outside the core. The proportion of the two types of patients in the core (12 MSFs, 0 
DEBONELs) and periphery (24 MSFs, 49 DEBONELs) clusters was significantly different (χ2 Yates (1, N=85) = 
16.368, p < .0001). Furthermore, the weighted degree centrality (sum of edge weights) of patient nodes in each 
cluster was also significantly different (U = 854.0, p < .001, two-tailed test), suggesting that the overall cytokine 
expression of the patients in the core (Median=5.1) was higher compared to those in the periphery (Median=1.9). 

To test whether the above clusters could have occurred by chance, we measured their clusteredness with respect to 
random permutations of the data. The patient clustering in the rickettsia data was significant when compared to 1000 
random networks based on variance of the dissimilarities (rickettsiae = 7.12, Random Mean = 6.46, p<.001 two-tailed 
test), skewness of the distribution of dissimilarities (rickettsiae = 3.27, Random Mean = 2.2, p<.001 two-tailed test), 
and kurtosis of the distribution of dissimilarities (rickettsiae = 15.26, Random Mean = 9.63, p<.001 two-tailed test).  

Although the clustering result enabled the identification of a discrete set of patients that had a significantly higher 
overall cytokine expression value compared to patients in the periphery, the network topology reflected a continuous 
change from the periphery to core of the network. For example, moving from the periphery towards the core of the 
overall network, the proportion of MSF patients progressively decreases, whereas the node size (representing 
weighted degree centrality) progressively increases. This relationship was captured by plotting the proportion of 
MSF patients at increasing levels of weighted degree centrality, which was best fitted by a decreasing log curve (y = 
-0.372ln(x) + 0.5565, R² = 0.92). In contrast, the equivalent curve for DEBONEL was best fitted by a steeper 
decreasing log curve (y = -0.561ln(x) + 0.7375, R² = 0.74), which captured the critical difference that a higher 
proportion of DEBONEL patients (that had a steeper head in the curve) had lower total cytokine expression 
compared to MSF patients (that had a shallower head in the curve). We refer to these as the proportionate degree of 
cytokine expression (PDCE) curves useful for comparing the cytokine expression profiles across diseases with 
different numbers of patients. The visual and quantitative results therefore together provided evidence that a small 
percentage of MSF patients experienced an overall high cytokine expression, whereas a larger number of MSF and 
DEBONEL patients in the periphery experienced a lower overall cytokine expression. 

Cytokine Clusters. As shown in Figure 1, most of the cytokines are pushed into the core of the overall network, but 
the network also suggests that the cytokines themselves have a core-periphery topology. As shown by the larger 
diameter of the cytokines in the center, some cytokines are more highly expressed compared to others.  

 
 
Figure 1. A bipartite network (automatically laid out by the Kamada-Kawai algorithm10) shows how 26 cytokines (circular 
nodes) co-occur across 85 patients (square and triangular nodes). The size of the nodes is proportional to the sum of the edge 
weights (representing normalized cytokine values) that connect to them, and the thickness of edges is proportional to cytokine 
values. Therefore patients with high total cytokine values have large nodes, and higher cytokine values are represented by 
thicker edges. The network has a core-periphery topology (red=core, blue=periphery) for the patients, in addition to the cytokines. 
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Similar to the patient clusters, the above 
pattern was also quantitatively verified 
through hierarchical clustering. As shown by 
the horizontal dendrogram in Figure 2, the 
cytokines fell into two clusters: a small cluster 
of 5 cytokines: MIP-1β, PDGF, G-CSF, GM-
CSF, and IL-17 (henceforth referred to as the 
cytokine core), and a larger cluster of the 
remaining 21 cytokines (henceforth referred 
to as the cytokine periphery). In addition to 
the presence of the cytokine clusters, the 
bipartite network also revealed the inter-
cluster relationships: the 12 MSF patients in 
the patient core had a significantly higher 
mean cytokine expression of the 5 cytokines 
in the core, compared to the patients in the 
periphery (U = 876, p < .0001, two-tailed 
test). This pattern can also be seen in the 
upper left hand corner of the heatmap in 
Figure 2 where the patient and cytokine cores 
intersect. One patient (large red triangle on the 
left in Figure 1, and the top patient row in 
Figure 2) within the patient core had a 
different profile of high cytokine expression 
compared to the rest in the core. 

The clusteredness of the above cytokine 
clusters in the rickettsia data was significant 
when compared to 1000 random networks based on variance of the dissimilarities (rickettsiae = 80.08, Random Mean 
= 73.26, p<.001 two-tailed test), skewness of the distribution of dissimilarities (rickettsiae = 2.01, Random Mean = 
1.65, p<.001 two-tailed test), and kurtosis of the distribution of dissimilarities (rickettsiae = 7.01, Random Mean = 
5.8, p<.005 two-tailed test). Furthermore, the 5 cytokines in the core (Median=20.8) have a significantly higher 
weighted degree centrality compared to the cytokines in the periphery (Median=3.9) (U = 104.0, p < .0001, two-
tailed test). 

Discussion 

The bipartite visualization and quantitative verifications revealed not only a core-periphery topology for the patients 
and the cytokines, but also a preferential connection between the 12 MSF core patients, and the 5 core cytokines. 
Among these 5 core cytokines, three (IL-17, GM-CSF, G-CSF) appear related to a pro-inflammatory pathway. IL-17 
is considered an important pro-inflammatory cytokine that is produced in a broad range of diseases including 
infections and autoimmune diseases11. Furthermore, elevated levels of IL-17 have been associated with the 
production of the growth factors GM-CSF and G-CSF12, which in turn play a critical role in stimulating growth and 
differentiation of macrophages and granulocytes (two important cell effectors in the immune response). We 
hypothesize that IL-17 might also stimulate endothelial cells to produce chemokines, resulting in an amplification of 
the inflammatory response possibly leading to a cytokine storm.  

Another potential mechanism suggested by the cytokine core involves PDGF (platelet-derived growth factor)-BB, 
MIP-1β (macrophage inflammatory protein also known as CCL4) and to a lesser degree VEGF (vascular endothelial 
growth factor) which appears outside of, but is similar in profile to members of the cytokine core. We hypothesize 
that PDGF-BB and VEGF are likely elevated due to diffused endothelial damage that would require “plugging” of 
denuded segments of microvessels with platelets, and subsequent repair by proliferation of endothelial cells to 
restore continuity of the endothelial monolayer in the microcirculation. However, both growth factors have also been 
implicated in increased microvascular permeability suggesting a potential important role in increased microvascular 
permeability seen in human rickettsioses and in their animal model counterparts13. While MIP-1β is produced by a 
large number of cells, the majority of MIP-1β in infections is produced by activated macrophages in response to 
LPS or other cytokines and growth factors such as GM-CSF13. The above two pathways might therefore be 
connected through their overlap with GM-CSF, in severe MSF patients.  

 
Figure 2. A heat map where rows represent patients, columns represent 
cytokines, and colors represent normalized cytokine values (green = 0, red 
= 1). The rows and columns are ordered based on the results of the 
agglomerative hierarchical clustering, with dendrograms for the patient 
and cytokines shown on the vertical and horizontal axes respectively. 
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While the 12 patients in the core are preferentially connected to the above 5 cytokines, it is important to note that the 
weighted degree centrality of those cytokines are not exclusively accounted for by the MSF patients, but are also 
expressed (although to a far lesser extent) by DEBONEL and MSF patients in the periphery. This suggests that the 
over-expression of the core cytokines in the 12 MSF patients could be caused by an immune response dysregulation. 
Supporting evidence is provided by platelet counts that were available for 8 of the 12 patients in the core. Of these 8 
patients, 7 had evidence of thrombocytopenia, suggesting these patients had a more severe form of MSF with 
diffused endothelial injury and vascular leakage. The overall results therefore provide testable hypotheses that the 
core cytokines and associated pathways are important in severe MSF patients, especially because of their potential to 
cascade into a cytokine storm3.  

Conclusions and Future Research 

Although a range of cytokines have been implicated in rickettsioses, little is known about the underlying biological 
mechanisms in humans. Here we presented a multivariate analysis of cytokine expression in human data using 
bipartite visual analytics. We believe this study makes three biological and methodological contributions. First, we 
have shown evidence for two biological mechanisms that were known to be present in mouse models and in vitro (at 
least partially) but have never been shown comprehensively in human patients with MSF. Second, we believe there 
is evidence for a cytokine storm expressed in the patient core based on the hypothesized role of the identified 
pathways. Third, we believe the overall bipartite visual analytical methodology and the PDCE curve can be used to 
analyze the nature and degree of cytokine expression during and after a storm across diseases. 

Cytokine storms are of course a time-related phenomenon, and a limitation of our study includes the lack of serum 
samples from several time-points during the disease progression in order to study the kinetics of cytokine 
expression. Furthermore, due to the policy hurdles of obtaining patient data from a foreign country, we have yet to 
receive complete clinical data for the patients to conduct inferential comparisons between the molecular and clinical 
variables. However, despite these limitations, the comparison of a mild and localized form of the disease to a more 
severe systemic form helped to identify which pathways could be activated in humans. Our future research aims to 
test these hypotheses in other datasets, and to use our visual analytical methodology to further define and use 
quantitative measures to characterize a cytokine storm over time. These advances should enable researchers to 
rapidly analyze the over-expression of cytokines in a wide range of infectious diseases, with the translational goal of 
identifying effective therapeutic targets. 
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