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Abstract

Background: Recent studies have shown that epigenetic 
differences can increase the risk of spontaneous preterm 
birth (PTB). However, little is known about heterogeneity 
underlying such epigenetic differences, which could lead 
to hypotheses for biological pathways in specific patient 
subgroups, and corresponding targeted interventions crit-
ical for precision medicine. Using bipartite network analy-
sis of fetal DNA methylation data we demonstrate a novel 
method for classification of PTB.
Methods: The data consisted of DNA methylation across 
the genome (HumanMethylation450 BeadChip) in cord 
blood from 50 African-American subjects consisting of 22 
cases of early spontaneous PTB (24–34 weeks of gestation) 
and 28 controls (>39 weeks of gestation). These data were 
analyzed using a combination of (1) a supervised method 
to select the top 10 significant methylation sites, (2) unsu-
pervised “subject-variable” bipartite networks to visual-
ize and quantitatively analyze how those 10 methylation 
sites co-occurred across all the subjects, and across only 
the cases with the goal of analyzing subgroups and their 

underlying pathways, and (3) a simple linear regression 
to test whether there was an association between the total 
methylation in the cases, and gestational age.
Results: The bipartite network analysis of all subjects and 
significant methylation sites revealed statistically sig-
nificant clustering consisting of an inverse symmetrical 
relationship in the methylation profiles between a case-
enriched subgroup and a control-enriched subgroup: 
the former was predominantly hypermethylated across 
seven methylation sites, and hypomethylated across three 
methylation sites, whereas the latter was predominantly 
hypomethylated across the above seven methylation sites 
and hypermethylated across the three methylation sites. 
Furthermore, the analysis of only cases revealed one sub-
group that was predominantly hypomethylated across 
seven methylation sites, and another subgroup that was 
hypomethylated across all methylation sites suggesting 
the presence of heterogeneity in PTB pathophysiology. 
Finally, the analysis found a strong inverse linear rela-
tionship between total methylation and gestational age 
suggesting that methylation differences could be used as 
predictive markers for gestational length.
Conclusions: The results demonstrate that unsupervised 
bipartite networks helped to identify a complex but com-
prehensible data-driven hypotheses related to patient sub-
groups and inferences about their underlying pathways, 
and therefore were an effective complement to supervised 
approaches currently used.

Keywords: Bipartite networks; epigenetics; network anal-
ysis; preterm; visual analytics; visualization.

Introduction
An estimated 13  million children are born annually 
through preterm deliveries, accounting for 9.6% of all 
births worldwide [1]. Preterm births (PTB; <37  weeks of 
gestation) account for approximately 70% of infant mor-
tality and morbidity resulting in high personal and finan-
cial costs [1]. For example, compared to children born at 
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term, those born preterm have a higher incidence of con-
ditions such as cerebral palsy, sensory deficits, learning 
disabilities, and respiratory illnesses [2]. Furthermore, as 
preterm children tend to have reduced fetal growth and 
numerous adverse intrauterine conditions, they are highly 
prone to the late onset of chronic diseases such as diabe-
tes, hypertension, coronary heart disease, and stroke [3, 
4]. Being born preterm therefore not only imparts a dif-
ficult start to life, but also confers considerable risk for a 
disease-burdened life [2–6].

What causes PTBs, and how can they be prevented? 
Reviews on this topic (e.g. [7]) cite numerous studies 
which have identified risk factors for PTB including socio-
economic status [8, 9], pre-existing comorbidities [10, 
11], and smoking [12] that predispose a mother to a PTB. 
For example, African-American women have approxi-
mately twice the risk of PTB compared to other races 
[13]. However, given the narrow window of the gestation 
period, few of these risk factors can be easily modified, 
and therefore do not provide practical targets for effective 
and timely interventions.

Recent studies [14–16] have begun to focus on the 
genetic and epigenetic changes that could be implicated 
in triggering preterm deliveries, and which could poten-
tially provide more practical targets for preventing them. 
As these studies have suggested the existence of epigenetic 
components in the biological pathways that trigger PTB, 
we recently analyzed methylated sites in fetal leukocyte 
DNA using whole genome analysis of cord blood from 
mothers who had early spontaneous PTB (gestational age 
24–34 weeks) with intact membranes [16]. Methylated sites 
are locations on the DNA where methyl groups are added to 
the DNA, resulting in modification in the function of genes. 
In humans, DNA methylation typically occurs where a cyto-
sine nucleotide occurs next to a guanine nucleotide (often 
referred to as a CpG site). Our analysis identified more than 
9000 differentially methylated sites representing several 
potential pathophysiologic pathways including inflamma-
tion, oxidative stress, matrix metabolisms, and myometrial 
activation. While such studies have proposed several bio-
logical pathways, little is known about how they trigger 
early spontaneous PTB with intact membranes.

One possible limitation of many such studies is that 
they have used primarily supervised methods to conduct 
a univariable analysis of the genes or methylation sites. 
Such methods typically generate a list of significant meth-
ylated sites (after correcting for multiple testing) based on 
their differential methylation levels between cases and 
controls. While such univariable analyses are powerful for 
narrowing genome-wide data to a small set of significant 
methylation sites, the methods potentially conceal patient 

subgroups that share similar methylation profiles caused 
by underlying molecular heterogeneity. Identifying and 
comprehending such patient subgroups based on their 
methylation profiles could enable inference for pathways 
triggering PTBs in each subgroup. Such results are a criti-
cal step in the design of targeted interventions, a corner 
stone of precision medicine.

One promising approach for identifying and com-
prehending such complex patterns of co-occurrence is 
through unsupervised bipartite network analysis [17]. 
For example, we have demonstrated that subject-variable 
bipartite networks [18] (which represent both subjects 
and variables in the same representation) can enable (1) 
the rapid identification of significant patient subgroups, 
and the variables (e.g. genes) that are strongly associated 
with them, and (2) the comprehension of those relation-
ships resulting in hypotheses for processes (e.g. biological 
mechanisms) underlying those subgroups. Here we dem-
onstrate the use of bipartite network analysis and visuali-
zation for re-analyzing data from our previous study [16] 
with the goal of enabling new insights into molecular het-
erogeneity and potential mechanisms that underlie PTB.

We begin by briefly describing current methods that 
have been used to identify patient subgroups in biomedi-
cal data, and our motivation for using bipartite networks 
to analyze subgroups based on PTB methylation. Next, we 
describe our network-based analytical method and how 
it enabled a domain expert in PTB to rapidly arrive at a 
complex but comprehensible understanding of heteroge-
neity in cases and in controls, in addition to heterogeneity 
within the cases which could be critical to the design of 
future targeted interventions. We conclude with a discus-
sion on why subject-variable bipartite networks enabled 
a deeper comprehension of the data, resulting in data-
driven hypotheses about the mechanisms underlying PTB.

The role of bipartite networks 
in identifying and comprehending 
patient subgroups and underlying 
mechanisms

Current approaches for identifying patient 
subgroups

A patient subgroup is defined as a subset of patients 
drawn from a population (e.g. PTB patients) that share one 
or more characteristics (e.g. a combination of methylation 
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sites). Patients have been divided into subgroups by using 
(a) investigator-selected variables such as using race for 
developing stratified regression models [19], or assign-
ing patients to different arms of a clinical trial, (b) exist-
ing classification systems such as by using the Medicare 
Severity-Diagnosis Related Group (MS-DRG) [20] to assign 
patients into a disease category for purposes of billing, or 
(c) computational methods such as classification [21–23] 
and clustering [24, 25] to discover patient subgroups from 
data.

One of the simplest unsupervised methods for com-
putationally identifying patient subgroups is by enumer-
ating conjunctions of variables, such as by analyzing all 
dyads and triads of co-occurring comorbidities in the 
Medicare database [26], and then examining the most 
prevalent subgroups. Other methods attempt to parti-
tion a dataset of patients and characteristics into sets 
that are relatively homogenous. These sets can either 
be one-sided clusters (clusters of patients, or clusters 
of characteristics) or co-clusters [25, 27, 28] (clusters of 
patients and characteristics). K-means and hierarchical 
clustering [23, 25] are among the most commonly used 
one-sided clustering methods and require inputs such 
as a similarity measure (e.g. Jaccard similarity) and the 
expected number of subgroups, but with no agreed-
upon approaches to automatically determine them. 
More recently, co-clustering [25, 27, 28] methods (also 
called biclustering methods) have been developed to 
automatically identify non-overlapping or overlapping 
submatrices consisting of both patients and charac-
teristics. Compared to the above partitioning methods 
that use similarity measures to identify clusters, dimen-
sionality reduction methods attempt to find a reduced 
dimensional space where differences among patients is 
maximized. For example, principle component analysis 
(PCA) [23] attempts to identify principal components 
which are weighted combinations of characteristics 
along which patients have the maximum variance. The 
patients are projected onto a plane typically defined by 
the two most important principal components. Methods 
such as k-means are then used to identify clusters of 
patients in this reduced dimensional space.

In contrast to the above unsupervised methods, 
supervised methods focus on identifying patient sub-
groups by taking into consideration outcome variables 
(e.g. responders and non-responders in a treatment arm). 
For example, classification and regression trees (CART) 
[23] (and enhancements such as random forests [29] 
and bump hunting [22]) progressively divides patients 
into subgroups based on the outcome variable by using 
conjunctions of patient characteristics at each step. The 

method outputs a tree, and each path from the root node 
to a leaf node defines a patient subgroup.

Strengths and limitations of existing 
methods

Although the above methods have improved our under-
standing of heterogeneity in different populations, they 
have important limitations with respect to enabling the 
identification and comprehension of patient subgroups. 
While all share the goal of identifying patient subgroups 
based on characteristics, they either (a) consider only 
some characteristics at a time when defining subgroups 
(e.g. methods using variable conjunctions), (b) output 
one-sided clusters such as patient subgroups without 
their characteristics (e.g. k-means, hierarchical clustering, 
PCA), or (c) cannot reveal the relationship among patient 
subgroups (e.g. co-clustering, CART).

As stated in the introduction, a central goal of preci-
sion medicine is not only to identify patient subgroups, 
but also to enable stakeholders to comprehend the pro-
cesses underlying those subgroups. This comprehen-
sion of disease processes underlying patient subgroups 
enables stakeholders to design interventions that are tar-
geted for each subgroup.

Bipartite network analysis and visualization

One approach that achieves the goals of analysis and 
comprehension of multivariable relationships is unsu-
pervised bipartite networks [17]. Network visualization 
and analysis [17] is an advanced form of visual ana-
lytics defined as “the science of analytical reasoning 
facilitated by interactive visual interfaces” [30]. Visual 
analytical methods such as unsupervised network 
analysis are designed to augment cognitive reasoning 
by transforming symbolic and numeric data into visuali-
zations, which can be manipulated through interaction 
[30]. Networks have been used to analyze a wide range of 
complex clinical, molecular, and social phenomena such 
as the co-occurrence of multimorbidities across patients 
[31], protein-protein interactions [32], and the spread of 
infections across a social group [33].

A network (also called a graph) [17] consists of a set 
of nodes, connected in pairs by edges; nodes represent 
one or more types of entities (e.g. subjects or methylation 
sites). Edges between nodes represent a specific relation-
ship between the entities (e.g. a subject has a specific 
methylation difference at a methylation site). Figure 1A 
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shows a unipartite network where nodes are of the same 
type (commonly used to analyze co-occurrence of genes 
across patients, or to analyze protein-protein interaction 
networks [32]). In contrast, Figure 1B shows a bipartite 
network where nodes are of two types, and edges exist 
only between different types of nodes such as between 
subject nodes (circles) and methylation site nodes 
(triangles).

Networks are typically laid out using force-directed 
algorithms that pull together nodes that are strongly con-
nected, and push apart nodes that are not. The result 
is that nodes with a similar pattern of connections are 
placed close to each other, and those that are dissimilar 
are pushed apart. As shown in Figure 1C, the application 
of the Kamada Kawai force-directed algorithm [34] to a 
bipartite network has revealed two clusters of subjects 
(one on the left and one on the right), each strongly asso-
ciated with different methylation sites.

In prior work [35–40] we have shown that such 
“subject-variable” [18] bipartite networks are especially 
effective in helping to comprehend subject subgroups 
because they not only help to identify how subjects 
cluster with each other, but also how they are related 
to variables such as methylation sites. This feature 
enables an understanding of intra-cluster associations 
(e.g. the left cluster in enriched with cases associated 
predominantly with three methylation sites) and inter-
cluster associations (e.g. the degree to which the sub-
jects in the case-enriched cluster shares methylation 
sites with the control-enriched cluster as reevaled by 
the inter-cluster edges). Furthermore, this feature dis-
tinguishes bipartite networks from other unsupervised 
methods [41] such as unipartite clustering (e.g. k-means 
and hierarchical clustering), and dimensionality reduc-
tion methods (e.g. principal component analysis) 

that cluster either subjects or variables, but not both 
simultaneously.

Methods
Data selection

For the current study, we reanalyzed samples drawn from the Nash-
ville Birth Cohort (NBC) described in a previous study [16]. Briefly, the 
NBC consists of samples of spontaneous preterm birth (cases), and of 
normal term birth (controls). In this cohort, maternal demographic 
and clinical data were recorded from medical records or through 
interviews during the consenting process; demographic and clinical 
data specific to the fetus were extracted from clinical records; ges-
tational age of the neonate was determined by maternal reporting 
of the last menstrual period and corroborated through ultrasound 
dating; race was identified by self-reporting tracing back to three 
generations from the maternal and paternal sides of the fetus; and 
maternal self-reports were used to determine socioeconomic (edu-
cation, household income, marital status, and insurance status), 
and behavioral (cigarette smoking) factors. A detailed description 
of these and other variables such as infections are described in past 
publications [42–44].

As described in our primary study [16], the samples used for 
the current analysis consisted of 50 African-American subjects of 
non-Hispanic ethnicity consisting of 22 cases of early spontane-
ous PTB (gestational age 24–34 weeks) and 28 controls (gestational 
age > 39 weeks). These cases and controls did not differ significantly 
in demographic or clinical factors [16, 45–50]. A detailed description 
of assay methods, analytical approaches, and data quality control 
measures can be accessed from the primary study [16]. To limit the 
influence of technical artifacts, β values for each methylation site 
were residualized to account for chip and row. Similarly, to limit 
sex-specific effects, the effects of sex were also residualized using a 
multiple regression. This retrospective study was approved by the 
Institutional Review Board (IRB) at the University of Texas Medical 
Branch. The data files used for the study were in the research identifi-
able format (RIF), and the records were anonymized and de-identified 
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Figure 1: The distinction between a unipartite network (A), a bipartite network (B), and how the latter can be used to identify clusters of 
subjects and strongly associated methylation sites (C).
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prior to analysis. As analysis of such data does not require informed 
consent, it was therefore not done.

Bipartite network analysis

Our analysis consisted of three steps [18]: (1) exploratory visual anal-
ysis to identify emergent bipartite relationships such as patterns of 
how methylation sites co-occur across subjects; (2) quantitative anal-
ysis to quantitatively verify and statistically evaluate the emergent 
patterns such as clusters; (3) inference of the biological mechanisms 
underlying different emergent clusters of subjects. This three-step 
method used in our earlier studies has revealed complex but compre-
hensible visual patterns, leading to inferences about the biomarkers 
and underlying mechanisms involved.
1. Exploratory visual analysis. We constructed two bipartite net-

works to analyze patient subgroups based on methylation pro-
files with the goal of comprehending the molecular pathways 
involved in PTB: (1) a case-control bipartite network of 22 cases, 
28 controls, and significant methylation sites, and (2) a case-
only bipartite network of only the 22 PTB cases and significant 
methylation sites.

Nodes in the above bipartite networks represented subjects 
or methylation sites. To analyze the association of subjects to 
methylation sites that had strong signal for PTB, we (a) ranked 
all methylation sites identified in our earlier study based on 
their univariable significance, (b) removed all methylation sites 
that were not on a gene, and that had a SNP under the probe, 
and (c) selected the top-10 ranked (FDR < 7.41 × 10−8) methylation 
sites. The resulting case-control network consisted of 50  sub-
jects (22 cases and 28 controls) and 10 methylation sites, and the 
case-only network consisted of 22 cases and the same 10 meth-
ylation sites. Furthermore, we used node color to distinguish 
cases (red) from controls (green) in the case-control network, 
and to distinguish emergent subgroups (case-subgroup-1 = pink, 
case-subgroup-2 = blue) in the case-only network.

Edge weights in the networks were used to represent the 
degree of methylation differences for each subject-methylation 
site pair. Because DNA methylation was measured on different 
chips, and methylation is already known to be strongly associ-
ated with gender of the fetus, the β values for each methylation 
site were residualized to account for chip, row, and sex-specific 
effects using a multiple regression. As regression residuals can 
range from negative to positive, and network layout algorithms 
require positive distances to position nodes, we shifted all resid-
ual values into the positive range. This was done by adding the 
least residual value for each methylation site to all its values, 
an approach which preserved the relative distances between 
subjects, and therefore enabled laying out the network using a 
standard force-directed algorithm.

Global patterns related to subjects and variables in the 
network were visualized and analyzed using the Kamada-Kawai 
[34] layout algorithm in Pajek (version 3.02) [51]. As shown in 
Figure 1C, the algorithm pulls together nodes that are strongly 
connected, and pushes apart nodes that are not. This algorithm 
is fast but approximate and is well-suited for medium sized 
networks consisting of between 100 and 1000 nodes [51]. The 
result is that nodes with a similar pattern of connections (e.g. M1 
and M2 strongly associated with the left cluster in Figure 1C) are 
placed close to each other.

A key advantage of a bipartite network representation is 
the simultaneous visualization of subjects and variables, rela-
tionships between them (methylation differences), node type 
(cases and controls), and emergent global patterns (clusters) in 
a uniform visual representation. Such a representation enables 
domain experts such as clinicians and biologists to comprehend 
explicit associations such as how subject nodes are connected to 
methylation site nodes, in addition to emergent associations such 
as intra and inter cluster associations, leading to the rapid genera-
tion of hypotheses based on complex multivariable relationships.

2. Quantitative analysis. We used three measures to quantita-
tively verify and statistically evaluate patterns derived from 
the exploratory visual analysis. These methods were selected 
based on their appropriateness to the emergent patterns in the 
network.
(a) Agglomerative hierarchical clustering: Because the net-

work layout suggested a clustered topology for subjects 
and for methylation sites, we used the agglomerative hier-
archical clustering method [41], which is best suited for 
networks that have small clusters [18, 35]. The clustering 
was done using the Manhattan dissimilarity measure with 
the Ward linkage function, and the number of clusters and 
their boundaries were determined based on natural breaks 
in the subject and methylation site dendrograms. The den-
drograms were also combined with the heatmaps to aid in 
the visual analysis of the results.

(b) Clusteredness: To test whether the clusters in the network 
could have occurred by chance, we compared the variance, 
skewness, and kurtosis of the dissimilarities in the data, to 
1000 random permutations of the dataset. For each network 
permutation, we preserved the size of the network, in addi-
tion to the edge weight distribution across patients when 
analyzing the patient dendrogram, and the edge weight dis-
tribution across methylation sites when analyzing the meth-
ylation dendrogram. Significant breaks in the subject or 
methylation site dendrograms would result in a significantly 
larger variance, skewness, and kurtosis of the dissimilarity 
measures, compared to the same measures generated from 
random permutations of the networks. Furthermore, we 
tested whether the proportion of cases and controls in the 
emergent subject clusters were significant using the χ2 test.

(c) Association between methylation and gestational age: As the 
two clusters of nodes in the case-only network appeared to 
have a wide range in methylation differences, we used sim-
ple linear regression to test whether there was an association 
between total methylation of each subject, and gestational 
age. This was done by calculating the weighted degree cen-
trality [17] for each patient node (sum of all its methylation 
differences across all the methylation sites), and testing its 
association (binned in increments of 0.25) to gestational age.

3. Inference of biological mechanisms. The verified clusters of 
subjects and methylation sites were used to identify hypotheses 
for biological pathways. This was done by (a) identifying the 
methylation sites that were strongly associated with each sub-
ject cluster, (b) mapping the methylation sites to their respective 
genes, and (c) identifying the biological pathways that are rep-
resented by the differentially methylated genes through the use 
of ingenuity pathway analysis (IPA). IPA (Ingenuity® Systems 
www.ingenuity.com) is a widely used database and retrieval 
system designed to help researchers map a given set of mole-
cules to biological pathways published in the literature.
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Results
The bipartite network analyses revealed distinct patterns 
of methylation differences between cases and controls, in 
addition to distinct patterns of methylation differences 
between subsets of cases.

DNA methylation differences between cases 
and controls

The bipartite network visualization of 50  subjects (22 
cases and 28 controls), and 10 methylation sites revealed a 
complex but understandable clustered pattern. As shown 
in Figure 2, there were two major clusters of subjects and 
methylation sites, one to the left, and another to the right.

To quantitatively verify the number of clusters and their 
members, we used agglomerative hierarchical clustering 
for the subjects, and for the methylation sites. As shown 
in Figure 3, the dendrogram shows a substantial break at 
two clusters both for the subjects, and for the methylation 
sites. The clusteredness of the subjects in the case-control 
network was statistically significant when compared to 1000 
random permutations of the networks based on variance 
of the dissimilarities (case-control network = 9.25, random 
mean = 1.09, P < 0.001 two-tailed test), skewness of the dis-
tribution of dissimilarities (case-control network = 6.06, 
random mean = 2.77, P < 0.001 two-tailed test), and 

kurtosis of the distribution of dissimilarities (case-control 
network = 40.08, random mean = 12.40, P < 0.001 two-tailed 
test). Similarly, the clusteredness of the methylation sites 
in the case-control network was also statistically significant 
when compared to 1000 random permutations of the net-
works based on variance of the dissimilarities (case-control 
network = 38.01, random mean = 3.61, P < 0.001 two-tailed 
test), skewness of the distribution of dissimilarities (case-
control network = 2.32, random mean = −0.24, P < 0.001 
two-tailed test), and kurtosis of the distribution of dissimi-
larities (case-control network = 6.68, random mean = 1.89, 
P < 0.001 two-tailed test).

The cluster boundaries of subjects were superimposed 
onto the network using translucent blue shapes, and the 
cluster boundaries of methylation sites were superim-
posed on the network using dashed ovals. This superimpo-
sition of cluster boundaries on the network revealed that 
the subject cluster on the left contained mainly cases, but 
also included two controls; the subject cluster on the right 
had mainly controls, but also included two cases. Despite 
this cross-over of phenotypes, the proportion of cases and 
controls in each subject cluster was significantly differ-
ent (χ2 Yates (1, n = 50) = 35.0757, P < 0.001), suggesting an 
overall strong separation in cases and controls based on 
their methylation profiles.

The subjects in the left case-dominated cluster (red 
nodes) were hypermethylated at seven methylation 
sites and their respective genes: cg10020892 (BCL9), 
cg22846826 (FOXK1), cg08726900 (ANKRD11), cg02753354 

Figure 2: Bipartite network visualization of 50 subjects (22 cases, 28 controls) and methylation sites.
The network revealed a significant separation between cases and controls, and the methylation sites that were strongly associated with 
each cluster. The blue shapes and dashed ovals denote cluster boundaries of subjects and methylation sites, respectively identified 
through agglomerative hierarchical clustering.
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Figure 3: Heatmap with dendrograms of 50 subjects and 10 meth-
ylation sites generated through agglomerative hierarchical 
clustering.
The largest break in the dendrogram is shown with the blue dotted 
lines, resulting in two clusters of methylation sites, and two clusters 
of subjects.

Figure 4: Bipartite network visualization of 22 cases and 10 methylation sites.
The network revealed two clusters of cases, and the methylation sites that were strongly associated with each. The dashed ovals denote 
boundaries of case clusters identified through agglomerative hierarchical clustering.

(HMHA1), cg07835443 (C16orf55), cg16705546 (IRF8), 
cg00153101 (PLCH2). They were also hypomethylated at 
the following three methylation sites and their respective 
genes: cg23754392 (BMI1) and cg25592206 (CDKN2C), and 
cg18183624 (IGF2BP1). In contrast, the subjects in the right 
control-dominated cluster (green nodes) had the opposite 
pattern: the subjects were hypomethylated at the above 
seven methylation sites, and hypermethylated at the 
above three methylation sites.

DNA methylation differences among cases

Because there was an overall strong and significant sepa-
ration of cases from controls, this separation could have 
concealed sub-patterns within the cases. We therefore 
removed all the controls from the network to inspect pos-
sible patterns among only the cases. Figure 4 shows the 
resulting network of 22 cases and the 10 methylation sites 
which was laid out and analyzed using the same approach 
as was used for the previous case-control network.

As shown in Figure 4, there was a cluster of cases on 
the left that was strongly hypermethylated at the same 
seven methylated sites as in the case-control network. 
However, as shown on the right, there was a dispersed 
group of cases with mainly thin edges connecting them 
to all the methylation sites, suggesting that this subgroup 
was hypomethelated at all the 10 methylation sites.
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Similar to the previous analysis, we quantitatively 
determined the boundaries of the clusters in the case-only 
network through agglomerative hierarchical clustering for 
the subjects and for the methylation sites. As shown in 
Figure 5, the dendrogram showed a substantial break at 
two clusters both for the subjects, as well as for the meth-
ylation sites. The cluster boundaries of the subjects were 
superimposed on the network using node color, and the 
cluster boundaries of the methylation sites were superim-
posed on the network using dashed ovals.

The clusteredness of the subjects in the case-only 
network was statistically significant when compared 
to 1000 random permutations of the network based on 
variance of the dissimilarities (case-only network = 1.31, 
random mean = 0.89, P < 0.001 two-tailed test), skew-
ness of the distribution of dissimilarities (case-only 
network = 2.80, random mean = 1.60, P < 0.001 two-tailed 
test), and kurtosis of the distribution of dissimilari-
ties (case-control network = 10.47, random mean = 5.20, 
P < 0.001 two-tailed test). Similarly, the clusteredness 
of the methylation sites in the case-only network was 
also statistically significant when compared to 1000 
random permutations of the network based on variance 

of the dissimilarities (case-only network = 10.05, random 
mean = 3.76, P < 0.001 two-tailed test), skewness of the 
distribution of dissimilarities (case-only network = 2.30, 
random mean = 1.96, P < 0.001 two-tailed test), and kur-
tosis of the distribution of dissimilarities (case-only 
network = 6.62, random mean = 5.66, P < 0.001 two-tailed 
test). These results suggest the existence of two PTB sub-
groups. The first subgroup on the left was hypermethyl-
ated at seven sites, and hypomethylated at three sites. In 
contrast, the second subgroup on the right was hypometh-
ylated on all 10 sites.

In summary, the bipartite network visualizations 
and analyses led to two key findings. (1) There existed an 
inverse symmetrical relationship in the methylation pro-
files between the cases and controls: cases were predomi-
nantly hypermethylated at seven methylation sites, and 
hypomethylated at three methylation sites, whereas con-
trols were predominantly hypomethylated at the above 
seven methylation sites and hypermethylated at the above 
three methylation sites. (2) There was strong evidence 
for heterogeneity in the profiles of the cases, where one 
patient subgroup was predominantly hypermethylated 
across seven methylation sites, and another patient sub-
group was hyomethylated across all 10 methylation sites.

Relationship between methylation 
and  gestational age

Because the two patient subgroups in the case-only network 
had a wide range in overall methylation differences, we 
tested if there was an association between total methylation 
difference in each case, and gestational age. The results 
showed an inverse linear relationship between the total 
methylation for each subject (binned in increments of 0.25), 
and gestational age (best fitted by y = −1.6222x + 36.052, 
R2 = 0.8488).

Inferences for biological mechanisms 
in preterm birth

An important goal of network visualization and analysis 
is to enable the comprehension of complex patterns in 
the data leading to hypotheses for the underlying pro-
cesses such as biological mechanisms. Accordingly, given 
the significant separation of cases and controls in the 
case-control network, and the significant heterogeneity 
in the case-only network, our goal was to infer the pos-
sible biological pathways underlying those patterns. We 
therefore used IPA to identify known pathways related 
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to genes represented by the seven methylation sites, and 
related to the genes represented by the three methylation 
sites (shown on the left and the right of both networks, 
respectively). The two bipartite networks along with the 
pathways identified from IPA were provided to a domain 
expert in PTB, who was asked to infer the potential mech-
anisms leading to PTB.

For the case-control network, he first attempted 
to analyze the IPA-identified pathways related to the 
seven methylation sites that were hypermethylated in 
the left case-dominated cluster. Unfortunately, none of 
the pathways appeared to be meaningful for PTB. Next, 
he analyzed the IPA-identified pathways related to the 
three sites that were hypermethylated in the right con-
trol-dominated cluster. Here he inferred that two of the 
hypermethylated sites (cg23754392, cg25592206) were 
likely downregulating their respective genes (BMI1 and 
CDKN2C) leading to the upregulation of TP53 (a known 
tumor suppressor), resulting in normal cell senescence 
required for the normal rupture of the placenta during 
labor. Because these very methylation sites were hypo-
methylated (represented explicitly by the thin edges 
that connected most of the subjects in the left case-
dominated cluster, to these two methylation sites on the 
right), he hypothesized that the opposite might hold for 
the cases: hypomethylation of the same two sites would 
lead to upregulation of BMI1 and CDKN2C, leading to the 
suppression of TP53 potentially resulting in decreased or 
absent cellular senescence.

Having determined a plausible role of cellular senes-
cence in PTB, he reexamined the genes related to the 
hypermethylated sites in the case-dominated cluster on 
the left. This led to a focus on BCL9 and IRF8, which he 
noted were both cell cycle promoters. He therefore unified 
the two insights by hypothesizing that the decrease or 
absence of the pathway related to normal cellular senes-
cence (inferred from the methylation sites strongly asso-
ciated with the control-dominated cluster on the right), 
in combination with the presence of the pathway that 
promoted cell cycle (inferred from the methylation sites 
strongly associated with the case-dominated cluster on 
the left) might potentially be responsible for triggering 
PTB in the cases.

Next, he attempted to infer the plausible mechanisms 
underlying the heterogeneity in the case-only network 
(Figure 4). As the left subgroup had mostly uniform 
hypermethylation of seven sites and hypomethylation of 
three sites, he inferred that the mechanisms underlying 
this subgroup also related to senescence. In contrast, as 
the right subgroup had mostly uniform hypomethylation 
of all 10 sites, he inferred that while they did not have a 

strong signature for senescence like the left subgroup, 
they also did not have as strong a signature as that of the 
control-dominated subgroup identified in Figure 3. This 
implied the existence of a continuum in methylation pro-
files, which could be the result of interaction with other 
risk factors triggering a PTB. Furthermore, the inverse 
relationship between total methylation and gestational 
age suggested that the fetal methylation associated epi-
genetic signature may be a useful predictor of an adverse 
pregnancy outcome such as PTB.

Recent studies provide corroborative evidence for the 
above mechanistic inferences. For example, existence of 
senescence as a mechanism was recently reported in fetal 
membranes and in fetal DNA [52–55]. However, because 
the precise mechanisms or functional pathways cannot 
be identified from differential methylation profiling, addi-
tional functional studies need to be conducted on these 
identified genes. Furthermore, methylation differences 
(hyper or hypo) are not always unidirectional [14], and 
many of the functional changes are linked to the type 
of cell or tissue, and the environment to which they are 
associated. Therefore, while the above inferences of path-
ways and heterogeneity derived from the visual analyt-
ics provide promising hypotheses related to senescence 
of fetal cells, these results need to be closely examined 
through future hypothesis-testing studies.

Discussion
From a biological perspective, even though the data had 
been previously rigorously analyzed, both networks 
revealed complex but comprehensible patterns leading to 
novel data-driven hypotheses. The case-control network 
revealed an inverse symmetrical relationship between 
cases and controls leading to biological inferences related 
to senescence. Furthermore, as discussed in the methods 
section, we used stringent criteria for the inclusion and 
exclusion of subjects, resulting in a relatively homoge-
neous group of cases and of controls with no significant 
demographic and clinical differences between them. 
However, despite these stringent criteria, the case-only 
network revealed patient subgroups based on methyla-
tion differences alone, demonstrating the important role 
that methylation changes in fetal DNA can play in reveal-
ing meaningful heterogeneities among cases.

From a methodological perspective, there were four 
features of the network representation that together con-
tributed to the rapid inferences related to the pathophysi-
ology in preterm births:
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1. Representation of node similarity in a Euclidean 
plane. Because a force-directed algorithm positions 
nodes in a Euclidean plane, it can use two degrees of 
freedom and continuous distances to more accurately 
represent inter-node similarity. For example, in a 
Euclidean plane, a node can have an identical relation-
ship to many other nodes simultaneously. This feature 
enabled the rapid detection of node associations such 
as clusters in both networks, in addition to revealing 
the degree of similarity of nodes within each cluster in 
the case-only network. In contrast, heatmaps (Figures 
3 and 5) position all nodes along a line either on the 
x- or y-axes at discrete distances determined by the 
widths of the rows and columns, which constrains how 
distance can be used to represent similarity between 
nodes. For example, a node can have an identical dis-
tance to a maximum of two nodes (one on either side), 
making it more difficult to accurately represent and 
comprehend complex inter- and intra-cluster relation-
ships. Therefore, while heatmaps are useful for verify-
ing patterns once identified, bipartite networks laid out 
in a Euclidean plane are more effective to support the 
process of discovery and inference of inter-node asso-
ciations between and within clusters [35].

2. Representation of subjects and variables using two 
sets of nodes. Because we represented subjects and 
variables simultaneously in the network, they helped to 
comprehend inter and intra cluster relationships. This 
feature facilitated the inspection of which subject clus-
ters were or were not strongly associated with which 
methylation clusters enabling inference of pathways.

3. Representation of subject type using node color. 
Because we chose to distinguish cases and controls 
in the case-control network by coloring them red and 
green respectively, they enabled rapid detection of the 
composition of clusters. This feature resulted in the 
identification of a case-dominated cluster, and a con-
trol-dominated cluster in the case-control network.

4. Representation of variable values using continu-
ous edge thickness. Because we chose to represent 
variable values as edge thicknesses, they enabled 
comprehension of the strength of associations within 
and across clusters. This feature enabled detection of 
hypo- and hypermethylation associations within and 
between clusters in both networks.

While each of the above representational features made 
specific contributions to the comprehension of the data, 
it is their simultaneous visualization which enabled the 
complex inference of the underlying biology. Therefore, 
while the network topology with two subject and two 

methylation site clusters looked deceptively simple, the 
combination of the above four representational features 
precipitated a plausible hypothesis of mechanisms and 
heterogeneity in PTB. Such a result would be difficult to 
derive if we had used only supervised methods such as 
univariable significance of the methylation sites, or by 
just analyzing a textual description of node membership 
in subject and methylation clusters.

The above process of comprehending visual patterns 
and inferring their meaning is based on well-known cog-
nitive processes related to information visualization. Cog-
nitively, visualizations such as subject-variable networks 
map multiple data elements to externalized visual rep-
resentations. When this mapping to visual elements is 
aligned with cognitive principles [30, 56–59], the resulting 
visual representation enables comprehension of complex 
patterns because of two key cognitive processes: (1) The 
visual representation leverages the massively parallel 
architecture of the human visual system consisting of the 
eye and the visual cortex of the brain [56]. This parallel 
cognitive architecture enables the rapid comprehension 
of multiple graphical elements simultaneously, which 
often leads to insights about relationships in complex 
data such as similarities, trends, and anomalies [30]. (2) 
The externalized representation reduces working memory 
load needed to process the data [60], enabling the freed-
up working memory to be used for higher-level processing 
such as the interpretation of patterns, requiring access of 
domain-knowledge in long-term memory.

Furthermore, while visualizations enable rapid com-
prehension of associations that are made explicit by the 
nodes, edges, and their properties, they also enable detec-
tion of implicit associations [61] resulting from the layout in 
an Euclidean plane including emergent multivariable pat-
terns such as clusters. As demonstrated in the current anal-
yses, these cognitive advantages conferred by appropriately 
designed subject-variable networks are critical for projects 
at early stages of discovery (such as the epigenetic analysis 
of PTB) as they enable complex reasoning about subjects 
and the variables. Often this process results in the discov-
ery of novel multivariable patterns in the data [35–40], such 
as heterogeneity based on methylation differences, and 
hypotheses for their underlying mechanisms, an early but 
crucial step in the design of targeted interventions.

Conclusion
Although several studies have analyzed epigenetic 
changes in preterm, little is known about the mechanisms 
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that trigger PTB. Here we demonstrated how bipartite net-
works revealed an inverse symmetrical relationship in 
the methylation profiles between PTB cases and controls, 
resulting in a complex but comprehensible hypothesis of 
the mechanisms precipitating PTB. Furthermore, the anal-
ysis revealed statistically significant heterogeneity within 
the methylation profiles of PTB cases, which is an early 
step towards the design of targeted interventions, a criti-
cal goal of precision medicine.

Although we do not yet know how methylation affects 
the function of genes involved in PTB, our analysis sug-
gests distinct mechanisms of PTB that involve the pres-
ence or absence of senescence. These pathways are most 
likely mediated by exposure to different risks which can 
impact methylation patterns leading to PTB. Bipartite 
network analyses therefore enabled us to derive data-
driven hypotheses of pathways in PTB, which should 
be tested in future functional methylation studies. Our 
current research focuses on extending the subject-var-
iable network analysis approach to process big datasets 
consisting of thousands of subjects and variables.

The limitation of this study is that our samples were 
derived from cord blood, and therefore the data cannot 
be used to establish causation based on fetal DNA meth-
ylation patterns at the time of birth. Accordingly, in our 
future work we will use maternal samples and prospec-
tive samples through which we will test the validity of our 
approach to further delineate cause and effect in patient 
subgroups, with the ultimate goal of developing targeted 
interventions to reduce the risk of preterm deliveries.
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