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Asthmatic patients are currently classified as either severe or non-severe based primarily on their
response to glucocorticoids. However, because this classification is based on a post-hoc assessment of
treatment response, it does not inform the rational staging of disease or therapy. Recent studies in other
diseases suggest that a classification which includes molecular information could lead to more accurate
diagnoses and prediction of treatment response. We therefore measured cytokine values in bronchoalve-
olar lavage (BAL) samples of the lower respiratory tract obtained from 83 asthma patients, and used
bipartite network visualizations with associated quantitative measures to conduct an exploratory analy-
sis of the co-occurrence of cytokines across patients. The analysis helped to identify three clusters of
patients which had a complex but understandable interaction with three clusters of cytokines, leading
to insights for a state-based classification of asthma patients. Furthermore, while the patient clusters
were significantly different based on key pulmonary functions, they appeared to have no significant rela-
tionship to the current classification of asthma patients. These results suggest the need to define a molec-
ular-based classification of asthma patients, which could improve the diagnosis and treatment of this
disease.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Asthma is a chronic inflammatory disease of the airways which
affects about 300 million individuals worldwide, and results in an
estimated 250,000 dying prematurely [1]. The disease is character-
ized by recurrent airflow obstruction and hyperactivity to nonspe-
cific stimuli [2], which is treated mainly with inhaled
glucocorticoid therapy. Although many asthma patients respond
well to such therapy, a subset of patients (referred to as ‘‘severe’’)
is unresponsive, and has disproportionately high rates of morbidity
and mortality. As a result, medical costs for treating this subset ac-
counts for more than 40% of the total cost of asthma treatment [3].

Unfortunately, relatively little is known about which patients
will have poor outcomes to glucocorticoid therapy. For example,
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although asthma patients are currently classified as severe or
non-severe based on their therapeutic response to glucocorticoids
[4], this course-grained clinical classification does not explain the
varying degrees of lung function compromise, airway hyper-reac-
tivity, gastro-esophageal reflux, and chronic obstructive pulmon-
ary disease (COPD) in patients currently diagnosed with severe
asthma. Physicians therefore often use a trial and error process
to balance escalating medications with associated side effects in
an effort to treat severe asthma patients.

Recent developments in molecular biology and powerful ana-
lytical methods such as network analysis provide new opportuni-
ties to shift our understanding of diseases from a morphological
(based on clinical and histological findings) to a molecular basis
[5,6]. For example, gene expression analyses have been shown to
improve prediction of treatment response in several diseases such
as breast cancer [7–9] and leukemia [10]. Because asthma is a
chronic disease associated with innate and T helper lymphocyte-
biased inflammation [2], we hypothesized that profiles of airway
fluid cytokines that represent major effectors molecules of
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leukocytic inflammation could provide insights for developing a
new molecular-based classification of asthma. Such a classification,
based on effector proteins found in lung fluids, could enable more
accurate prediction of disease progression and therapeutic
response.

We begin by describing our motivation for the current analysis
through a brief summary of previous approaches used to analyze
asthma patients. Next, we describe how we assembled a dataset
of patients and their cytokine profiles, why and how we repre-
sented it using networks, and how we analyzed the networks using
visualizations and appropriate quantitative measures. We then dis-
cuss how the bipartite network analysis revealed complex co-
occurrence patterns of cytokine across patients, and how those
patterns relate to key attributes of pulmonary function, and known
molecular pathways. We conclude by discussing the need to define
a molecular-based classification of chronic asthma patients, and
the utility of bipartite network analyses to understand complex
relationships.
Table 1
Comparison of six independent pulmonary functions across the three patient clusters
identified by the network analysis. Significant differences (at the 0.05 level) between
the groups are indicated by asterisks based on a one-way, two-tailed Kruskal–Wallis
test with an FDR correction (FVC = forced vital capacity, FEV1 = forced expiratory
volume in 1 s, PC20 methacholine = dose of methacholine that produces 20% fall in
FEV1, FEV1 albuterol reversal = percent change in FEV1 in response to albuterol
inhalation, MPV = maximal postbronchodilator value, pp = percent predicted).

Pulmonary function p value with FDR correction

Max FVCpp/MPVLung 0.006�

Max FEV1pp/MPVLung 0.0375�

Baseline FEV1pp 0.0375�

Baseline FEV1/FVC 0.1944
Max FEV1 reversal 0.583
PC20 methacholine 0.0375�
2. Related work

As stated in the introduction, there is a growing consensus
among asthma researchers that the current classification of asthma
patients has not been sufficiently predictive to guide treatment.
For example, a 2009 World Health Organization panel consisting
of 33 asthma researchers from 14 countries concluded that ‘‘the
use of severity as a single outcome measure has limited value in pre-
dicting which treatment will be required and the response to that
treatment’’. Moreover, they noted that ‘‘severity is not a stable fea-
ture of asthma but may change with time, whereas the classification
by disease severity suggests a static feature’’ p. 928 [1].

Despite decades of research in asthma, why has it been so diffi-
cult to formulate a classification of asthma patients that can guide
effective treatment? We believe this is because majority of the re-
search has either begun with an a priori grouping of patients (using
phenotype or molecular information), or has used analytical meth-
ods such as hierarchical clustering that assume the existence of
disjoint patient clusters [11–14]. For example, Hastie et al. [11]
grouped patients based on severity and analyzed how the imposed
groups were similar or different based on other phenotype vari-
ables. Similarly, Woodruff et al. [12] grouped patients based on
high or low expression of IL-13 inducible genes, and compared
the imposed groups based on other genes, and lung functions.

To avoid biases based on a priori patient groupings, some
researchers have taken a more data-driven approach to identify
emergent clusters of patients. For example, Moore et al. [13] used
hierarchical clustering to identify five groups of patients based on
phenotype information, and then examined which variables were
significant between the groups. Similarly, Brasier et al. [14] used
hierarchical clustering to identify four groups of patients based
on molecular information, but then used the existing severe versus
non-severe classification to identify emergent clusters for further
analysis. While such data-driven approaches address the limita-
tions of a priori groupings of patients, unsupervised learning meth-
ods such as hierarchical clustering and k-means assume the
existence of disjoint clusters in the data [15], and therefore could
conceal other valid patterns (e.g., uniform distributions or nested
clusters) of how patients relate to each other.

Although the above studies have substantially increased our
appreciation of the complex multidimensional nature of asthma,
to the best of our knowledge none have used data-driven ap-
proaches without strong built-in assumptions to analyze how pa-
tients are similar or different based on molecular information.
Such an approach has the potential to inform the identification of
a more clinically useful classification of asthma patients.
3. Method

Our research began with the question: How do cytokines impli-
cated in asthma, co-occur across patients? To address our research
question, we made critical decisions regarding data selection, data
representation and data analysis as discussed below.

3.1. Data selection

Our study was based on a secondary analysis of cytokine pro-
files collected in a consortium-wide study [14]. Levels for 25 cyto-
kine were measured from bronchoalveolar lavage (BAL) samples of
the lower respiratory tract obtained from 40 severe, and 43 non-
severe asthma patients. The classification of patients was made
according to the consensus definition of the American Thoracic
Society [4], and the two groups were balanced by age and gender.
As shown in the first column of Table 1, the dataset included six
pulmonary function measures determined to be independent by
the domain experts. Because 50% of values in 7 cytokines (IL-1b,
IL-7, IL-10, IL-12, IL-13, IFN-c, and GM-CSF) had undetectably
low values, they were removed from the dataset, resulting in a to-
tal of 18 cytokines (see our earlier publication [14] for details about
the data collection and inclusion criteria).

3.2. Data analysis

Our analysis consisted of two steps: (1) exploratory visual
analysis though the use of networks to identify emergent visual
patterns of cytokine co-occurrence; and (2) quantitative analysis
through the use of methods whose assumptions matched the vi-
sual patterns in order to verify them. This two-step method was
motivated by our earlier studies [15–17] using a similar approach
which have revealed that co-occurrence relationships can exhibit
in different patterns (e.g., nested clusters, disjoint clusters), each
prompting the use of quantitative methods that make the appro-
priate assumptions about the underlying data.

3.2.1. Exploratory visual analysis
Networks are increasingly being used to analyze a wide range of

molecular phenomena such as gene regulation [19], disease-gene
associations [20], and disease-protein associations [21]. A network
(also referred to as a graph in mathematics) consists of a set of
points or nodes, joined in pairs by lines or edges; nodes represent
one or more types of entities (e.g., patients or cytokines). Edges be-
tween the nodes represent a specific relationship between the
entities (e.g., a patient has a particular cytokine expression value).
Fig. 1 shows a bipartite network (where edges exist only between
different types of entities) [22] of patients and cytokines, which
was created using Pajek [23] (version 1.23).

Node diameter was used to represent the sum of the edge
weights connected to it. This enabled a rapid visual inspection to



Fig. 1. A bipartite network (automatically laid by the Kamada–Kawai algorithm [21]) shows how 18 cytokines (colored nodes) co-occur across 83 patients (black nodes). The
thickness of the edges is proportional to the normalized cytokine expression values, and the size of the nodes is proportional to the sum of the edge weights that connect to
them. Therefore patients with high total cytokine values have large nodes, and higher cytokine values are represented by thicker edges. For clarity, colors represent cytokine
clusters, transparent blue shapes represent patient clusters, and patient IDs are not shown. See Supplementary Fig. A, which shows the same network shown here, but with
the patient nodes colored by severity to help examine the relationship of the current severe vs. non-severe classification, to the patient clusters. The reader is referred to the
web version of this article to see this figure and its legend in color.
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determine for example, which patients have overall high aggregate
cytokine values, and how such patients relate to the rest of the net-
work. In addition, using a second network of the same data (see
Supplementary Fig. A), the node color was used to represent asth-
ma severity (red for severe, and blue for non-severe), which en-
abled us to analyze how the patterns in the overall network
related to the existing classification of asthma.

Edge weights in the network were used to represent the strength
of the cytokine values for each patient–cytokine pair. Because the 18
cytokines had different and unknown theoretical ranges, we used
the min-max normalization method using the following formula:

v 0ij ¼ ðv ij �miniÞ=ðmaxi �miniÞ;
where vij is the raw expression value for cytokine i of patient j, v 0ij is
the corresponding normalized value, and mini and maxi represent
the minimum and maximum raw expression values of cytokine i
across all patients. This formula performs a linear transformation
on the raw data values by converting them to range from 0 to 1,
and therefore preserving the relative distances between the values.
The min–max normalization method enables a consistent method
to compare the different cytokines values, and is especially useful
when outliers are meaningful such as what tends to occur in asthma
cytokine expression due to biological diversity [24]. As shown in
Fig. 1, the edge thicknesses were drawn to be proportional to these
normalized cytokine values.

Global patterns in the network were visualized and analyzed
using the Kamada–Kawai layout algorithm [25]. The algorithm re-
sults in nodes that are connected by high edge weights to be pulled
together, and those with low edge weights to be pushed apart. This
algorithm is fast but approximate1 and well-suited for small to
1 The Kamada–Kawai layout algorithm is approximate because it does not
guarantee a globally optimal layout. The method is therefore used to explore the
data using different starting conditions, and the observed topology verified using
appropriate quantitative methods.
medium-sized networks consisting of between 50 and 1000 nodes
[26]. As shown, the result is that nodes with a similar pattern of con-
nections (e.g., Eotaxin and IL-4 in the lower right hand side of Fig. 1)
are placed close to each other.

Network analyses provide two advantages for analyzing com-
plex relationships. (1) They do not require a priori assumptions
about the relationship of nodes within the data, such as the hierar-
chical assumption of hierarchical clustering, or disjoint clusters of
k-means. Instead, by using a simple pair-wise representation of
nodes and edges, network layouts enable the identification of mul-
tiple structures (e.g., hierarchical, disjoint, overlapping, nested) in a
single representation [26]. Therefore, while layout algorithms such
as Kamada–Kawai depend on the force-directed assumption and its
implementation, such algorithms are viewed as less biased for data
exploration because they do not impose a particular cluster struc-
ture on the data, often leading to the identification of more com-
plex structures in the data [15]. (2) Networks enable the
simultaneous visualization of multiple raw values (e.g., patient–
cytokine associations, cytokine values, patient attributes), aggre-
gated values (e.g., sum of cytokine values), and emergent global
patterns (e.g., clusters) in a uniform visual representation. The
overall network representation therefore enables the rapid gener-
ation of hypotheses based on complex multivariate relationships,
and enables a more informed approach for selecting quantitative
methods to verify the patterns in the data.

3.2.2. Quantitative analysis
The insights derived from the network visualizations were

quantitatively analyzed using three methods. (1) Because the net-
work layout suggested the presence of distinct clusters for patients
and for cytokines, we used the agglomerative hierarchical cluster-
ing method to verify the number of clusters, and to identify the
boundaries of the clusters. In addition, we used a heat map to in-
spect the profiles of specific patients and cytokines. The clustering
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was done using the Manhattan dissimilarity measure (to handle
the weighted edges) with the Ward linkage function [18]. Cluster
boundaries were determined based on natural breaks in the pa-
tient and cytokine dendrograms. To test whether there were signif-
icant breaks in the dendrogram (denoting the existence of disjoint
clusters), we compared the variance, skewness, and kurtosis of the
dissimilarities in the asthma network, to 1000 permutations of
the asthma network. For each network permutation we preserved
the number of nodes, and the number of edges connected to each
node, in addition to the edge weight distribution of patients when
analyzing the cytokine dendrogram, and vice versa. Significant
breaks in the asthma patient or cytokine dendrograms would re-
sult in a significantly larger variance, skewness, and kurtosis of
the dissimilarity measures, compared to the same measures gener-
ated from the random networks.

(2) To analyze the relationship between asthma severity and
the patient clusters, we used the chi-square test of independence.
To analyze the overall significance of 6 independent pulmonary
functions, we used the one-way, two-tailed Kruskal–Wallis test
(non-parametric ANOVA) to address the skewed values, and the
false discovery rate (FDR) procedure to correct for multiple com-
parisons. (3) To analyze the significance between each pair of clus-
ters for the above patient variables, we used the Dunn’s test
procedure.
2 FVC and FEV1 are commonly used pulmonary function tests in asthma. Here we
used an additional test called maximum postbronchodilatory volume (MPV) to aid us
in further characterizing the degree of airflow obstruction.

3 In contrast, only two (Baseline FEV1pp and MaxFEV1pp/MPVLung) of the six
measures were significantly different across the severe and non-severe patients).
4. Results

The bipartite network visualization and quantitative analysis
revealed distinct patient clusters, and cytokine clusters. For each
set of clusters we describe the results of the visual analysis, the
cluster analysis, and their significance to clinical attributes and
molecular processes.

4.1. Patient clusters

4.1.1. Exploratory visual analysis
As shown in Fig. 1, the visual analysis helped to identify three

clusters of patients based on their cytokine profiles: (a) Patient-
Cluster-1 (shown in the lower right hand corner of Fig. 1) had
medium to high levels of the Eotaxin and IL-4. However, they
had relatively lower values for the rest of the cytokines as shown
by their relatively small diameters. (b) Patient-Cluster-2 (shown
in the center of the network) had high values of Eotaxin and IL-4,
but also high values for another set of six cytokines (IL-5, IFN-c,
MIP1a, MIG, IL-17, MIP-1b) shown in the center of the network.
The higher cytokine values result in relatively larger node diame-
ters compared to Cluster-1. (c) Patient-Cluster-3 has overall lower
values of many cytokines resulting in them being scattered along
the top periphery of the network. The overall lower levels of most
cytokines result in relatively smaller node diameters.

4.1.2. Quantitative analysis
Because the network suggested the existence of distinct patient

clusters, we used agglomerative hierarchical clustering to identify
the number and boundaries of those clusters. As shown by the pa-
tient dendrogram on the vertical axis of Fig. 2, the agglomerative
hierarchical clustering identified the boundaries of the visual clus-
ters in the network. Furthermore, while Patient-Cluster-1 and Pa-
tient-Cluster-2 were intuitively clear from the network, Patient-
Cluster-3 was identified as a distinct cluster in the dendrogram be-
cause its members have a pattern of similarly low cytokine levels.
The clusteredness of the patients in the asthma network was sig-
nificant as measured by the variance of the dissimilarities (Asth-
ma = 64.95, Random Mean = 20.08, p < .001 two-tailed test),
skewness of the distribution of dissimilarities (Asthma = 4.9, Ran-
dom Mean = 2.81, p < .001 two-tailed test), and kurtosis of the dis-
tribution of dissimilarities (Asthma = 30.24, Random Mean = 14.78,
p < .001 two-tailed test).
4.1.3. Relationship to clinical variables
To infer the meaning of the three patient clusters, we analyzed

the relationship between each identified cluster to asthma sever-
ity, and to pulmonary function.
4.1.3.1. Asthma severity. As discussed in the introduction, patients
are currently classified as severe or non-severe. Supplementary
Fig. A shows the same network in Fig. 1, but where the patient
nodes have been colored based on severity (red for severe, and blue
for non-severe). An inspection of the network showed no visual
pattern; there appeared to be an even number of both types of
severity in each cluster. The chi-square analysis verified this visual
result, which showed no significant association in asthma severity
between the three patient clusters (v2(2,N = 83) = 0.9298,
p = 0.628). This suggests that a classification of patients based on
cytokine profiles does not match the current classification of asth-
ma based on severity.
4.1.3.2. Pulmonary function. As shown in Table 1, the Kruskal–Wal-
lis test revealed that 4 out of 6 pulmonary function2 measures were
significantly different across the clusters.3 The pair-wise inter-clus-
ter analysis revealed that Patient-Cluster-3 had three lung functions
(Max FEV1pp/MPVLung, Baseline FEV1pp, and PC20 Methacholine)
that were significantly higher than Patient-Cluster-1, and one lung
function (Max FVCpp/MPVLung) that was significantly higher than
Patient-Cluster-2. In contrast, Patient-Cluster-1 had only one lung
function (Max FVCpp/MPVLung) that was significantly higher than
Patient-Cluster-2. Patient-Cluster-3 therefore had less baseline air-
way obstruction (both FEV1 values were significantly higher), less
hyper-reactive to methacoline challenge (significantly higher PC20

Methacholine), and preserved pulmonary capacity (significantly
higher FVC values) compared to the other two patient clusters.
4.2. Cytokine clusters

4.2.1. Exploratory visual analysis
The bipartite network visualization also revealed three cyto-

kines clusters, which have a complex relationship to the patient
clusters. (a) Cytokine-Cluster-1 (in the lower right hand side of
the network) consisting of Eotaxin and IL-4 contain cytokines that
are pushed together because many patients from Patient-Cluster-
1 and -2 have high values of those two cytokines. Their resulting
larger diameters suggest that they are over-represented in patients
compared to the other cytokines. This observation is also salient by
the many red cells (representing high values) in the last two col-
umns (representing Eotaxin and IL-4) of the heat map in Fig. 2.
(b) Cytokine-Cluster-2 consisting of six cytokines (mentioned ear-
lier) which are pushed together because they have high values of
mainly Patient-Cluster-2. Unlike Cytokine-Cluster-1, they have
high values for only one patient cluster, and therefore have smaller
diameters. (c) Cytokine-Cluster-3 consisting of the remaining
cytokines scattered on the left and right hand side of the network
have overall lower values across all patients, and therefore have
the smallest diameters in the network.



Fig. 2. A heat map where the rows represent patients, the columns represent cytokines, and the colors represent normalized cytokine values (green = 0, red = 1). The rows and
columns are ordered based on the results of the agglomerative hierarchical clustering, with dendrograms for the patient and cytokines shown on the vertical and horizontal
axes respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.2.2. Quantitative analysis
Similar to the patient clusters, the network suggested the exis-

tence of distinct patient clusters. We therefore used agglomerative
hierarchical clustering to identify the number and boundaries of
the clusters. As shown by the cytokine dendrogram on the horizon-
tal axis of Fig. 2, the agglomerative hierarchical clustering identi-
fied the boundaries of the visual clusters in the network. While
Cytokine-Cluster-1 and Cytokine-Cluster-2 are intuitively clear
from the network, Cytokine-Cluster-3 is identified as a distinct
cluster in the dendrogram because it has a pattern of similarly
weak levels with patients. This observation is salient by the large
number of green cells (representing low values) for this cluster
in the heat map in Fig. 2. The clusteredness of the cytokines in
the asthma network was significant as measured by the variance
of the dissimilarities (Asthma = 837.62, Random Mean = 46.69,
p < .001 two-tailed test), skewness of the distribution of dissimilar-
ities (Asthma = 2.18, Random Mean = 0.49, p < .001 two-tailed
test), and kurtosis of the distribution of dissimilarities (Asth-
ma = 7.25, Random Mean = 2.49, p < .001 two-tailed test).

4.3. Discussion

The results suggest that cytokine values can indeed separate pa-
tients into distinct clusters. While this result was sufficient on its
own for insights to cluster asthma patients, the bipartite network
analysis also helped to identify cytokine clusters and their relation-
ship to the patient clusters, which enabled us to infer biological
meaning about the patient clusters.

The frequent co-occurrence of Eotaxin and IL-4 (Cytokine-Clus-
ter-1) is congruent with a known sequence of molecular changes in
asthma patients who often have a T-helper-2 (TH2) lymphocyte-
skewed immune response. This response results in the secretion
of IL-4, which in turn induces Eotaxin production by bronchial
epithelial cells [27]. The resulting downstream actions include
the activation and recruitment of tissue-resident eosinophils, a
hallmark of early stage asthma. The presence of Eotaxin and IL-4
in lung fluids therefore appears to represent important sub-stages
of a complex molecular pathway in asthma, which explains their
frequent co-occurrence in the network.

To understand the biological significance for cytokines in Cyto-
kine-Cluster-2 (IL-5, IFN-c, MIP1a, MIG, IL-17, and MIP-1b), we
entered its members into the Ingenuity Pathway Analysis (IPA)
application. The results from IPA suggest that the frequent co-
occurrence of these cytokines is regulated by the innate inflamma-
tory nuclear factor-jB pathway (NF-jB). NF-jB is a potent pro-
inflammatory transcription factor that activates expression of
cytokine networks. Furthermore, persistent NF-jB activation has
been linked to uncontrolled/acute exacerbations of asthma [28].
The frequent co-occurrence of this set of cytokines therefore im-
plies the presence of a distinctly different pro-inflammatory state
compared to the IL-4–Eotaxin process.

The above cytokine clusters, along with pulmonary functions of
the patients, provide a biological explanation for the patient clus-
ters. The strong relationship of Patient-Cluster-1 to Cytokine-
Cluster-1 suggests that patients in this cluster have disease pri-
marily driven by TH2 inflammation. In contrast, Patient-Cluster-
2 has a strong relationship to both Cytokine-Clusters-1 and -2. This
result implies that patients in Patient-Cluster-2 have a component
of activated innate inflammatory pathways. Further evidence for
this inference of state-based clusters is provided by differences in
pulmonary function across the clusters: Patient-Cluster-3 which
has the lowest cytokine values for both of the above cytokine clus-
ters, also has the largest number of significant differences in
obstructive airway disease parameters in pulmonary function
testing, and lowest airway reactivity response to methacholine
compared to Patient-Clusters-1 and -2. This implies that Patient-
Cluster-3 represents a subgroup of asthmatics with preserved pul-
monary function and greatest response to albuterol without active
inflammation. The network analysis of patients and cytokines
therefore implies a state-based classification of asthma patients
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informed by underlying molecular processes. The results also pro-
vide evidence for the growing consensus [1] that asthma is a dy-
namic disease where the same patient could enter different
asthmic states based on environmental and other triggers. Future
studies that include such information could lead to a better under-
standing of the relationship between triggers and resulting asth-
mic states, which could translate into more effective treatment
and prevention approaches that are personalized to each patient.

The limitation of our study is that we analyzed only one dataset,
and our future research will attempt to replicate the results in a
similar dataset. However, the current results suggest that asthma
patients can be meaningfully classified using molecular markers
such as cytokines.

4.4. Conclusions and future research

Cytokines control key processes in asthma including immune
activation and T lymphocyte skewing. However, little work has
been done to investigate whether and how cytokines could help
to classify patients. By using bipartite network visualizations with-
out a priori assumptions of patient classes, combined with appro-
priate quantitative methods suggested by the patterns in the
network, we arrived at a new state-based understanding of
asthma.

Our experience suggests that the bipartite network representa-
tion was effective because it enabled: (1) the overlaying of multiple
raw and aggregated variables in addition to the cluster boundaries,
onto the same visualization; (2) the selection of quantitative meth-
ods that made the appropriate assumptions about the observed co-
occurrence patterns in the data; and (3) the detection of complex
relationships between the patient clusters and the cytokine clus-
ters, which were difficult to detect by analyzing just the heat
map in Fig. 2. These combined features of the bipartite network
representation enabled the asthma experts on the team to derive
an intuitive understanding of the complex multivariate relation-
ships between molecular and phenotype information, which rap-
idly led to the proposed state-based classification. The overall
approach of using complementary visual and quantitative methods
to comprehend complex molecular and phenotype relationships
therefore provides an approach that could generalize to other data-
sets with similar translational goals.

It is important to reiterate that the bipartite network could have
revealed co-occurrence patterns without the presence of distinct
clusters, prompting us to use other methods to quantify the pat-
terns as we have done in a recent study on cancer patients [15].
Therefore, we believe that bipartite networks provided an impor-
tant first step to identify the nature of co-occurrence in molecular
data, which then guided the use of appropriate quantitative meth-
ods to verify those patterns.

In our future research, we plan to extend our understanding of
the current results in three ways:

(1) Analyze the significance of the emergent clusters of patients
and cytokines by comparison of the bipartite network
directly to random networks. This is a non-trivial task as
modularity algorithms for bipartite networks [29] (designed
to identify and measure the significance of graph partitions
or clusters in bipartite networks) currently do not handle
edge weights [personal communication Roger Guimerà,
Mark Newman].

(2) Explore other complementary visual analytical methods to
identify other complex relationships in the data. For exam-
ple our recent use of three dimensional (3D) immersive visu-
alizations of a renal dataset enabled the identification of a
complex relationship of domain importance that was missed
in the analysis of a 2D network analysis of the same data
[30]. Furthermore, although networks allow multiple vari-
ables to be represented using graphical attributes such as
color, shape, and size, there are limits on the number of vari-
ables that can be simultaneously represented or compre-
hended, often resulting in the need for multiple networks.
We are therefore exploring the use of Circos Ideograms
[31–33] which are explicitly designed to enable a large set
of variables to be simultaneously visualized, with the goal
of exploring their relationship to the clusters identified
through the network analysis, and to each other.

(3) Use the patient clusters and their relationship patient vari-
ables to inform the development of classifiers using super-
vised learning methods. The goal of developing classifiers
that are informed by the unsupervised learning methods
used in the current study is to enable the resulting classifica-
tion not only to have predictive power for response to ther-
apy, but also to be meaningful from a domain perspective.

The results of the above multi-method approach, progressing
from discovery through visual analytics, verification and validation
through quantitative analysis, and prediction through classifiers,
could lead in the future to a molecular classification of asthma pa-
tients that is based on underlying biological processes and has
intuitive domain meaning. Such a classification has a higher prob-
ability for successful translation to clinical diagnosis and treatment
of this complex disease.
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