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Abstract
A critical goal of multidisciplinary scientific teams is to integrate knowledge from 
diverse disciplines for the purpose of developing novel insights and innovations. 
For example, multidisciplinary translational teams (MTTs) which typically include 
physicians, biologists, statisticians, and informaticians, aim to integrate biological and 
clinical knowledge leading to innovations for improving health outcomes. However, 
such teams face numerous barriers in integrating multidisciplinary knowledge, which 
is further exacerbated by the explosion of molecular and clinical data generated from 
millions of patients. Here, we explore the use of a visual analytical representation 
to help MTTs integrate molecular and clinical data with the goal of accelerating 
translational insights. The results suggest that the visual analytical representation 
functioned as a “computational evolving boundary object” which (a) evolved through 
several emergent states that progressively helped integrate diverse disciplinary 
knowledge, (b) enabled team members to play primary and supportive roles in 
evolving the data representation resulting in a more egalitarian team structure, and 
(c) enabled the team to arrive at novel translational insights leading to domain and 
methodology publications. However, the interventions also revealed limitations in 
the approach motivating new visual analytical approaches. These results suggest 
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(a) implications for theory related to modeling computational evolving boundary 
objects (CEBOs) as an instance of team-centered informatics, and (b) implications 
for practice related to the design and use of interactive features that enable teams to 
fluidly evolve CEBOs through emergent states, with the goal of deriving novel insights 
from large multiomics datasets.

Keywords
visual analytics, computational evolving boundary objects, biomedical insights, 
multidisciplinary scientific teams, team-centered informatics

Introduction

Numerous organizations worldwide are investing huge resources in assembling multi-
disciplinary scientific teams to address complex real-world problems (Klein, 2010; 
Trochim, Marcus, Masse, Moser, & Weld, 2008). This realization is motivated by sev-
eral studies which show that multidisciplinary scientific teams have many advantages 
compared to researchers working alone including increased research productivity 
(Hall et al., 2012), faster and broader dissemination of results across disciplinary 
boundaries (Stipelman et al., 2014), and generation of highly significant outcomes and 
practical applications (Hage & Meeus, 2009).

However, scientific teams increasingly face significant barriers in generating innova-
tive solutions to complex problems. For example, multidisciplinary translational teams 
(MTTs), a specific form of multidisciplinary scientific teams that typically include phy-
sicians, biologists, statisticians, and informaticians, face the challenge of integrating 
their biological and clinical knowledge with the goal of translating the results into inno-
vations to improve health outcomes (Ameredes et al., 2015; Wooten et al., 2015). 
Furthermore, the challenge of integrating information from diverse disciplines is exacer-
bated by the explosion of multiomics data including genomic, proteomic, metabolomic, 
phenomic, and social data collected from millions of patients (Bietz et al., 2016).

Fortunately, a growing understanding of the social and psychological antecedents 
of effective teams (Falk-Krzesinski et al., 2010; Stokols, Hall, Taylor, & Moser, 2008), 
combined with powerful computational visual analytical methods (Thomas & Cook, 
2005) designed for helping researchers integrate diverse types of knowledge, provide 
new opportunities for empowering multidisciplinary scientific teams. Here, we explore 
the role that visual analytics can play in enabling MTTs to integrate diverse informa-
tion from large biomedical data sets, with the goal of generating novel insights and 
innovations for improving health outcomes.

We begin by discussing the barriers faced by multidisciplinary scientific teams in 
integrating knowledge from multiple disciplines, and how the “integrative capacity” 
framework provides a starting point for exploring potential interventions. Next, we 
discuss the cognitive motivations underlying the field of visual analytics, and its role 
in helping humans integrate complex information. We then present a case study where 
we designed and used a visual analytical method as an intervention in an MTT to help 
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integrate molecular and clinical information. We conclude by discussing the strengths 
and limitations of the intervention, and the theoretical and practical implications of the 
results for helping scientific teams integrate diverse disciplinary knowledge with the 
goal of generating insights and innovative solutions.

Background

Barriers to Integrating Diverse Knowledge in Multidisciplinary Science 
Teams

Multidisciplinary science teams consist of specialists from different disciplines work-
ing toward a common goal and exist in virtually every sphere of science (Falk-
Krzesinski et al., 2010). In contrast to interdisciplinary and transdisciplinary science 
teams whose goal is to create knowledge that extends beyond the scope of any one 
discipline, multidisciplinary science teams have the goal of integrating knowledge 
from diverse sources to solve challenging scientific problems (Klein, 2010). For 
example, MTTs, a specific form of multidisciplinary scientific team typically consist 
of physicians, biologists, statisticians, and informaticians who attempt to integrate 
knowledge from each of their disciplines with the goal of translating that knowledge 
into innovations to improve health outcomes (Ameredes et al., 2015; Wooten et al., 
2015).

Unfortunately, while multidisciplinary scientific teams are critical for addressing 
complex real-world problems, they encounter numerous barriers leading to missed 
opportunities for generating novel insights. These barriers include (a) narrow social 
identification which makes scientists strongly identify with values, methods, and 
norms of their own discipline, resulting in evaluating members within their own disci-
pline more favorably compared to those outside (Hewstone, Rubin, & Willis, 2002); 
(b) disagreement on team goals emanating from strong discipline identification such 
as basic scientists favoring theoretical advances compared to applied scientists favor-
ing practical applications (Bunderson & Sutcliffe, 2002); (c) differing conceptualiza-
tion of a problem leading to little overlap in methods of analysis and interpretation 
(Lélé & Norgaard, 2005); (d) too wide a breadth of knowledge across the team mem-
bers with an inability to leverage it to solve a common problem (Dougherty, 1992; 
Liyanage & Barnard, 2003); (e) physical and temporal differences in workspaces 
resulting in poor coordination of tasks best achieved in collocated settings (Olson & 
Olson, 2000); (f) too dense or too sparse social and informational networks resulting 
in either being closed off to new ideas, or not having enough alignment with ideas in 
a discipline (Perry-Smith, 2006); and (g) little or too much familiarity between team 
members resulting in either reduced cohesion and trust, or formation of closed cliques 
of friends (Stokols, Harvey, Gress, Fuqua, & Phillips, 2005) that miss opportunities for 
cross-fertilization of ideas from those outside their clique.

While many of these barriers have been analyzed separately with specific interven-
tions to address them, the concept of “integrative capacity” has been proposed as a 
conceptual framework to unify the barriers and respective interventions (Salazar, Lant, 
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Fiore, & Salas, 2012). This framework proposes that specific interventions can be 
progressively introduced in a team to improve integrative capacity resulting in emer-
gent states such as shared team identity and trust. This coevolution of knowledge and 
integration has the potential of overcoming integration barriers and precipitating cut-
ting-edge insights and innovations.

The integrative capacity framework further suggests specific interventions in the 
form of propositions to address the barriers. For example, team leaders could help 
diverse team members to identify a shared goal, develop a common problem concep-
tualization, and minimize power and status differences. Furthermore, leaders could 
generate “boundary objects” defined as “an object which lives in multiple social 
worlds and which has different identities in each,” and which “act as anchors or 
bridges” for the team members (Star & Griesemer, 1989, pp. 409, 414). Such objects 
could facilitate a collective understanding of diverse disciplinary knowledge. For 
example, similar to an organizational chart which shows how each employee fits into 
an overall organization, a boundary object in a scientific team is designed to enable 
team members integrate their disciplinary knowledge into the shared team knowledge. 
Finally, team members who belong to more than one disciplinary or professional 
group could help bridge social networks within subgroups in the team (Gray, 2008), in 
addition to developing conflict and affect management skills to foster greater trust and 
collaboration (Klein, Knight, Ziegert, Lim, & Saltz, 2011). The authors emphasize that 
improving integrative capacity does not depend on any individual team member, but 
rather on the interaction of the social, psychological, and cognitive systems across all 
members in the team. While each of these propositions are based on empirical studies 
in the literature, the authors encourage further empirical investigations of the interre-
lationships between the proposed antecedents of improving integrative capacity, and 
their effect on knowledge integration in teams (Salazar et al., 2012).

The Role of Visual Analytics in Enabling Knowledge Integration and 
Translational Insights

While the integrative capacity framework provides broad guidelines for interven-
tions to help improve integration in multidisciplinary teams, MTTs have the specific 
problem of integrating large and diverse data sets consisting of molecular and clini-
cal information (Wooten et al., 2015). One approach that has shown promise in help-
ing humans integrate such large and complex data sets are computational methods 
from the rapidly maturing field of visual analytics. Visual analytics is defined as the 
science of analytical reasoning, facilitated by interactive visual interfaces (Thomas 
& Cook, 2005). The primary goal of visual analytics is to augment cognitive reason-
ing by translating symbolic data (e.g., numbers in a spreadsheet) into visualizations 
(e.g., a scatter plot), which can be manipulated through interaction (e.g., highlight 
only some data points in the scatter plot).

Visualizations are powerful because they leverage the massively parallel architec-
ture of the human visual system consisting of the eye and the visual cortex of the brain 
(Card, Mackinlay, & Shneiderman, 1999). This parallel cognitive architecture enables 
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the rapid comprehension of multiple graphical relationships simultaneously, which 
often leads to insights about relationships in complex data such as similarities, trends, 
and anomalies (Thomas & Cook, 2005). For example, the detection of an outlier in a 
scatter plot is fast because the graphical relationships between the outlier and the rest of 
the points can be processed in parallel by the visual cortex. Such parallel processing is 
independent of the number of nonoutlying points and therefore scales up well to large 
amounts of data. In contrast, finding an outlier in a spreadsheet of numbers involves 
numerical comparisons to identify the outlier, which is dependent on the much slower 
symbolic processing areas of the human brain. Such symbolic processing is serial in 
nature, and therefore highly dependent on the number of data points, which when large 
can quickly overwhelm an analyst. Data visualizations therefore help to shift process-
ing from the slower symbolic processing areas of the human brain, to the faster graphi-
cal parallel processing of the visual cortex enabling comprehension of large and 
complex data sets such as those currently available for complex diseases such as asthma 
and Alzheimer’s disease (Card et al., 1999). Furthermore, visual analytic representa-
tions such as a bar chart shift information from an internal to an external representation 
reducing working memory loads and therefore enable the analyst to use the freed up 
resources for deriving critical insights from the data (Zhang & Norman, 1994).

While static visualizations of data can be powerful if they are aligned with tasks, 
data, and mental representations, they are often not sufficient for comprehending com-
plex data. This is because data analysis typically requires many different tasks per-
formed on the same data such as discovery, inspection, confirmation, and explanation 
(Bhavnani, Bellala, Victor, Bassler, & Visweswaran, 2012), each requiring different 
views of the data. Furthermore, when analysis is done in teams consisting of different 
disciplines, each member often requires a different representation of the same data. 
For example, in an MTT, a molecular biologist might be interested in which cytokines 
are coexpressed across patients, whereas a clinician might be interested in the clinical 
characteristics of patients with similar cytokine profiles, and later how they integrate 
with the molecular information. To address these changes in task and mental represen-
tation, visualizations require interactivity or the ability to transform parts or the entire 
visual representation. Interactive changes enable a visual analytical representation to 
be iteratively changed based on the associations discovered during the analytical pro-
cess. This iterative process, with a focus on facilitating reasoning and making sense of 
complex information individually and in groups (Thomas & Cook, 2005), distin-
guishes visual analytics from information visualization which has typically focused on 
visually presenting the results of analysis. These features make visual analytical repre-
sentations especially useful for tasks such as inferring biological pathways from 
molecular and clinical information in MTTs.

Visual Analytics As a Boundary Object to Enable Knowledge Integration 
and Novel Insights

While the field of visual analytics has generated numerous representations such as 
interactive bar charts and interactive maps (Heer, Bostock, & Ogievetsky, 2010), 
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one of the most advanced forms of visual analytical representations are networks 
(Newman, 2010). Networks are powerful because they not only enable an interactive 
visualization of complex associations, but because they are based on a graph repre-
sentation, also enable quantitative analysis and validation of the patterns that are 
identified in the visualization. This visual and quantitative coupling therefore 
enables cognitive comprehension of patterns in addition to their statistical signifi-
cance, both of which are critical in science.

A network (also called a graph; Newman, 2010) consists of a set of nodes, con-
nected in pairs by edges; nodes represent one or more types of entities (e.g., patients 
or genes). Edges between nodes represent a specific relationship between the entities 
(e.g., a patient has a mutation on a specific gene). Figure 1A shows a unipartite net-
work where nodes are of the same type (commonly used to analyze co-occurrence of 
genes across patients, or to analyze protein–protein interaction networks; Jensen et al., 
2009). In contrast, Figure 1B shows a bipartite network where nodes are of two types, 
and edges exist only between different types of nodes such as between patient nodes 
(circles) and gene nodes (triangles), with the edges representing a relationship between 
them such as a patient has a mutation.

As shown in Figure 2A, the bipartite visual analytical method takes as input any 
data set consisting of patients and their characteristics (e.g., mutated genes), and auto-
matically outputs a quantitative and visual description of patient subgroups (Bhavnani 
et al., 2015). The quantitative output provides the number, size, and statistical signifi-
cance of patient subgroups and their most highly co-occurring characteristics. The 
visual output displays the quantitative information of the patient subgroups through a 
network diagram as shown in the figure.

A key advantage of a bipartite network visualization is that besides showing the num-
ber and size of the disease subgroups, it also reveals the relationships within and across 
disease subgroups. For example, the network visualization in Figure 2A reveals that 
patients in the left subgroup have a more uniform profile compared to patients in the 
right subgroup. Furthermore, three patients in the right subgroup share a characteristic 
that occurs most frequently in the left subgroup (shown by the darker edges between the 
subgroups), whereas none of the patients in the left subgroup share a characteristic fre-
quently occurring in the right subgroup. Such relationships could enable clinicians and 
basic scientists to infer, for example, that the disease-causing mechanisms and resulting 
interventions in the right subgroup involve complex interactions, which could overlap 

Figure 1. A unipartite network (A) has nodes of the same type connected in pairs by an 
edge, whereas a bipartite network (B) has nodes of two types connected in pairs by an edge.
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with the left subgroup. Insights such as these are difficult to derive from many computa-
tional approaches such as classification (Hastie, Tibshirani, & Friedman, 2001; Kehl & 
Ulm, 2006; Lipkovich, Dmitrienko, Denne, & Enas, 2011) and unipartite clustering 
(Abu-Jamous, Fa, & Nandi, 2015; Fitzpatrick et al., 2011) which are not designed to 
reveal relationships within and across patient subgroups simultaneously.

When the data contain clinical outcomes, that information can be overlaid onto the 
network using node color. For example, as shown in Figure 2B, the patient nodes can 
be colored red and blue to represent diseased and healthy, respectively. The resulting 
patient-characteristic-outcome network enables an integration of molecular and clini-
cal outcomes in a unified visual-quantitative representation. This unified representa-
tion, besides externalizing complex associations that reduce working memory loads, 
enables each discipline to comprehend how their disciplinary knowledge relates to 
the whole, and therefore increases the chances of an integrated insight about the 
mechanisms underlying the disease. For example, physicians and biologists in an 
MTT could together infer that the gene mutations in the left cluster in Figure 2B 
increase risk of the disease because they are associated with mostly the diseased, 
whereas the gene mutations in the right cluster are protective as they are involved 
with mostly the healthy. This integration of biological and clinical knowledge could 

Figure 2. Examples of how a data set of patients and characteristics (e.g., genes) can be 
modeled as a bipartite network (A), in addition to integrating clinical information (e.g., 
outcomes such as diseased and healthy) through node color (B) in the same representation.
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lead to inferences related to the underlying risky and protective biological mecha-
nisms in the disease being analyzed. While the examples show binary mutation asso-
ciations and disease outcomes, bipartite networks can also model continuous 
associations using edge thickness, in addition to continuous disease outcomes using 
variations in the color of nodes.

Because the patient-characteristic-outcome network represents molecular, clinical, 
and statistical information, it spans the disciplinary worlds of physicians, biologists, 
and analysts while integrating the information in a unified representation, and there-
fore meets the definition of a boundary object (Star & Griesemer, 1989). Given its 
digital nature, we hypothesized that the patient-characteristic-outcome network would 
function as a computational boundary object to enable MTTs gain an integrated under-
standing of molecular and clinical information, leading to translational insights into 
the mechanisms of the disease and potential treatments. Furthermore, we wished to 
investigate how such a representation would affect specific team processes elucidated 
by the integrated capacity framework.

While several studies have analyzed computational boundary objects, they have 
primarily focused on the macro impact such boundary objects have had on an organi-
zation. For example, the introduction of anonymous blogs into an organization 
empowered employees to make candid recommendations on how to improve opera-
tions (Daniel, Hartnett, & Meadows, 2017). Because many of these recommendations 
from employees were implemented by the management, the evolving content of the 
blog revealed a shift in the organizational boundaries related to decision making. 
Similarly, the introduction of three-dimensional (3D) modeling software into design 
and construction organizations enabled drawings of the different trades (structure, 
plumbing, electricity) to be automatically generated from the 3D model (Taylor, 
2007). However, the shift to a single computational model of the building from which 
other drawings were derived, required the designers to provide more accurate design 
details earlier in the design process. This shift contrasted to the approximate drawings 
they had previously produced using 2D software, because the engineers would redo 
the drawings at a later stage creating more accurate construction drawings. The intro-
duction of the 3D system therefore expanded the boundary of team members who 
were responsible for providing accurate details of the building design. In contrast to 
such studies which have focused on the macro impact of computational boundary 
objects on organizational boundaries and relations, the current study focuses on the 
micro-phenomena related to the use of a computational boundary object in a multi-
disciplinary science team enabling a more detailed analysis of its use and impact on 
team dynamics.

Method

Our goal in the current study was to introduce the visual analytical data modeling 
method shown in Figure 2 as an intervention in MTTs to analyze its effects on generat-
ing novel translational insights.
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Team Selection

We selected MTTs based on three criteria: (a) had possession of a data set containing 
molecular and clinical or demographical data of patients, (b) had the goal of identify-
ing the biological mechanisms in the disease based on molecular and clinical informa-
tion, and (c) had previous analysis and/or publications of the data set so we could 
determine whether the insights made during the analysis were novel and primarily 
based on the visual analytical intervention.

Data Collection

Building on the theoretical constructs from the integrative capacity framework (Salazar 
et al., 2012), and the iterative process inherent in visual analytics (Thomas & Cook, 
2005), we introduced the visual analytical representation in each team with a focus on 
analyzing (a) its role as a boundary object that spanned disciplines and (b) the associ-
ated effects on team dynamics and outcomes. We recorded the members of the team 
and their primary discipline, prior publications on the data set selected for analysis, 
changes that were made to the data representation, who made the changes, and their 
motivations. We also recorded biomedical or methodological insights, in addition to 
publications, and grants at each step of the analysis.

Analysis

The above data were coded under the categories of data representation, team dynam-
ics, and outcomes:

1. Data Representation. We focused on three concepts related to changes in the 
data representation: (a) Trigger for Change in the representation defined as the 
reason why the representation was changed (e.g., clusters being difficult to 
comprehend). (b) Method of Change in the representation that was defined as 
any computational, statistical, or manual change to the data representation 
resulting in a new state of the representation. (c) Resultant State of the repre-
sentation defined as any visual or quantitative transformation of the data (e.g., 
normalization of the data, mapping of data into a network, and calculating the 
significance of the clustering). Minor modifications (e.g., change of font or 
zooming) which had no impact on the overall comprehension of the data were 
not considered as a changed representational state.

2. Team Dynamics. We focused on analyzing team dynamics at the granularity of 
changes in data representation. We therefore coded whether a team member 
had a primary contribution in changing the representation by suggesting or 
leading the change in representation, or a supportive contribution by observ-
ing, agreeing, or not agreeing for changing the representation. As the roles in 
each team were well-defined (e.g., the visual analyst had little knowledge of 
the domain, and conversely the physician had little knowledge of visual 
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analytics), the roles shifted based on the expertise needed in each step of the 
analysis, resulting in an unambiguous coding. However, analysis of such team 
dynamics with members that have overlapping expertise would require more 
fine-grained analysis with interrater consensus for the coding.

3. Outcomes. The outcomes were coded in the following categories: (a) 
Biomedical Insights defined as a cause–effect relationship derived from 
observed relationships in the data (Davidson & Sternberg, 1995), which were 
not previously published by the team members; (b) Methodological Insights 
related to the methodology; and (c) Publications or Grants which were based 
on, or included the biomedical and methodological insights made through the 
intervention.

Results

We present a detailed description of the effects of the visual analytical intervention in 
one MTT focused on severe asthma, and then summarize our results from our ongoing 
analysis of three other MTTs.

Team Structure and Goals

We selected an MTT focused on analyzing phenotypes of severe asthma that met our 
three inclusion criteria: possessing a data set containing molecular and clinical or 
demographical data of patients, having the goal for understanding the biological 
mechanisms in the disease, and having completed previous analysis and/or publica-
tions of the data set using conventional statistical methods to enable us to determine 
if the insights were novel. This team consisted of an asthma physician who led the 
MTT, and included a biologist specializing in proteomics, a statistician, a visual 
analyst, and a computer programmer.

Data and Prior Publication

The data consisted of 108 asthma patients, and 18 cytokines (protein molecules 
involved in intercellular communication) known to be implicated in asthma. 
Additionally, the data included clinical variables consisting of six lung function vari-
ables, and status on asthma severity (severe vs. not severe). The data had been ana-
lyzed and published (Brasier et al., 2008) using conventional statistical methods such 
as t tests, and regression. The published approach first classified patients based on 
severe and nonsevere patients, and then identified subphenotypes of patients using 
proteomics profiles. The cytokine-based subclassification was therefore dependent on 
the a priori classification of severe and not severe. However, it is well known that this 
classification does not predict the outcome of asthma (Bousquet et al., 2010). The 
team was therefore motivated to reanalyze the data using the visual analytical approach 
without the severity status, to identify heterogeneity in asthma and respective molecu-
lar pathways, with the goal of designing targeted treatments.
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Visual Analytical Results

Figure 3 shows the seven main stages through which the data representation evolved. 
Each change in the data representation is associated with the primary or supportive 
role played by team members in changing the data representation, in addition to the 
outcomes related to insights, publications, and grants. Inspection of the seven stages 
revealed that they fell into the following four broad areas related to data preparation, 
visual representation, quantitative verification, and inference:

1. Data preparation
a. The analysis began with the raw data in a spreadsheet (not shown in Figure 

3) where the rows represented patients, the columns represented cyto-
kines, and the cells contained raw cytokine expression values. As algo-
rithms that use Euclidean space to display data require the values to have 
a uniform quantitative and interpretive range, the raw cytokine values 
were first converted into normalized values using the minimum–maxi-
mum (min-max) range-normalization method. This method transforms the 
differing ranges of data in each variable be from 0 to 1 by making the 
minimum value = 0, the maximum value = 1, and mapping of the rest of 
the values proportionally. The visual analyst played the primary role in 
making this decision based on prior experience in conducting network 
analysis of similar data, and was supported by a programmer who imple-
mented the data transformation. The resulting data representation was a 
spreadsheet containing range-normalized cytokine expression values.

2. Visual representation and exploration
b. The normalized symbolic data were then visually represented as a bipartite 

network using Pajek (a well-known network visualization and analysis 
application; Nooy, Mrvar, & Batagelj, 2011). For this transformation, the 
analyst needed to determine which entities in the data should represent the 
nodes in the network, and which relationships between the entities in the 
data should represent the edges in the network. After conferring with the 
physician and biologist, the visual analyst represented the nodes as either 
patients or cytokines, and edges to represent the range-normalized cytokine 
expression values. Furthermore, to capture the degree of cytokine expres-
sion, the edge thicknesses were made proportional to the normalized cyto-
kine expression values. Therefore, thick edges represented higher cytokine 
expression values compared to thin edges. Finally, the size of the node was 
made proportional to the total expression value of the connecting edges. 
Therefore, large patient nodes have overall higher aggregate normalized 
cytokine expression values compared with smaller patient nodes. The 
resultant data representation was a bipartite network as described above, 
where the network nodes were layout out around a circle.

c. As the circular layout of the network did not make salient the similarities and 
differences among nodes, the visual analyst applied a standard Kamada–
Kawai layout algorithm (Kamada & Kawai, 1989) to the network. This 
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resulted in nodes with a similar pattern of connecting edge weights to be 
pulled together, and those with different patterns to be pushed apart. 
Studying the network layout, the physician and biologist noted the existence 
of distinct clusters of patients and cytokines, in addition to intercluster rela-
tionships such as which patient clusters are most closely related with which 
cytokine clusters. This complex but understandable clustering generated 
high interest in the team. However, the statistician, seeing the output of a 
bipartite network analysis for the first time, questioned the normalization 
method used, which was different from the standard normalization 
approaches he had used. This led both to do additional reading and experi-
ments, which resulted in an understanding of the distinction between a regu-
lar normalization method, compared to the range normalization method 
being used. Both agreed that the min–max range normalization method was 
valid, but could be sensitive to new patients being added to the current data 
set, potentially changing the maximum and minimum values of any vari-
able. As there were no plans to add additional patients to the data set, the 
team decided to move ahead with the min–max range normalization method.

3. Quantitative verification
d. While the layout algorithm revealed the overall topology of the data sug-

gesting strong clustering, it was not designed to identify the cluster bound-
aries. The visual analyst therefore used quantitative clustering methods to 
identify the boundaries of the clusters and to test the significance of the 
clustering. This was done using hierarchical clustering, visualized through 
a heatmap and dendrogram. The results identified three patient clusters 
and three cytokine clusters. However, the programmer who had used clus-
tering before, questioned the linkage function selected for the hierarchical 
clustering, but agreed that as there were no guidelines to pick one over the 
other, and therefore they should proceed with the analysis. The physician 
and biologist who had conducted such clustering before supported the 
continuation of the analysis. The visual analyst also used random permuta-
tions of the network data to determine if the clustering could have occurred 
by chance, which was implemented by the programmer.

e. Given that the network and heatmap representations were different 
views of the same data and difficult to cognitively integrate, the visual 
analyst superimposed the cluster boundaries over the network to pro-
duce an integrated visualization of patient and cytokine clusters. This 
was achieved by coloring the nodes such that nodes in each cluster 
shared the same color. However, this approach resulted in too many dif-
ferently colored nodes, which did not improve comprehension. The 
analyst therefore decided to use two different methods for denoting 
cluster boundaries. Using Pajek, he first used the same color for all 
cytokine nodes within a cluster. He then copied the network into 
PowerPoint and drew shapes to denote the boundaries of the patient 
clusters. This representation, which combined the visual and 
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quantitative results was presented to the team for interpretation. The 
biologist and physician agreed that based on their prior knowledge, the 
clustering of the cytokines made biological sense, but they were unable 
to infer the molecular pathway with only that information. The physi-
cian therefore requested additional analysis to determine how the 
patient clusters differed in their clinical lung function variables.

f. The visual analyst and the statistician together selected Kruskal–Wallis (a 
nonparametric statistical test to address the skewed distribution of the 
data) for identifying which of the six patient lung function variables were 
significantly different across the three patient clusters. Three of the vari-
ables were significantly different after correcting for multiple testing. The 
results were displayed in a table containing all six variables, with the three 
that were statistically significant highlighted in yellow.

4. Inference of biological mechanisms and asthma phenotypes
g. To associate the significant variables with the patient clusters, the ana-

lyst decided to color the patient nodes based on the significant variables. 
However, as the patient nodes could have only one color at a time, the 
visual analyst generated three additional networks, one for each of the 
three significant variables. These networks were shown using PowerPoint 
animation to enable an understanding of how the three patient clusters 
were associated with the clinical variables, and their relationship to 
cytokine clusters. Using the integrated representation of molecular and 
clinical information, the biologist and clinician began the process of 
interpreting the network. They first referred to the Ingenuity Pathway 
Analysis database to verify their inferences, checked prior publications 
on similar pathways, and then arrived at a consensus. Figure 4 shows an 
enlarged image of the network to show the pathway that was identified 
for each patient cluster.

Given the importance of the novel insight, we present as data a verbatim descrip-
tion of the pathway inferences and implications for precision medicine written by the 
physician and biologist from our publication:

The frequent co-occurrence of Eotaxin and IL-4 (Cytokine-Cluster-1) is congruent with 
a known sequence of molecular changes in asthma patients who often have a T-helper-2 
(Th2) lymphocyte-skewed immune response. This response results in the secretion of 
IL-4, which in turn triggers Eotaxin production by bronchial epithelial cells (Fujisawa 
et al., 2000). The resulting downstream actions include the activation and recruitment of 
tissue-resident eosinophils, a hallmark of early stage asthma. The presence of Eotaxin 
and IL-4 in lung fluids therefore appears to indicate key sub-stages of a complex 
molecular pathway in asthma, which explains their high co-occurrence in the network.

To comprehend the biological significance of cytokines in Cytokine-Cluster-2 (IL-5, 
IFN-γ, MIP1a, MIG, IL-17, and MIP-1β), they were entered into the Ingenuity Pathway 
Analysis (IPA) application. The results suggest that the frequent co-occurrence of these 
cytokines is regulated by the innate inflammatory nuclear factor-κB pathway (NF-κB). 
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NF-κB is a potent pro-inflammatory transcription factor that activates expression of 
cytokine networks. In addition, persistent NF-κB activation has been linked to uncontrolled/
acute exacerbations of asthma (Gagliardo et al., 2003). The frequent co-occurrence of this 
set of cytokines therefore implies the presence of a distinctly different pro-inflammatory 
state, when compared to the IL-4–Eotaxin process discussed above.

The above cytokine clusters combined with the pulmonary functions of the patients, 
provide a biological explanation for the patient clusters. The strong relationship of 
Patient-Cluster-1 to Cytokine-Cluster-1 suggests that patients in this cluster have disease 
driven primarily by Th2 inflammation. In contrast, Patient- Cluster-2 has a strong 
relationship to both Cytokine-Clusters-1 and -2. This result implies that patients in 
Patient-Cluster-2 have a component of activated innate inflammatory pathways. 
Additional evidence for this inference of state-based clusters is evidenced by differences 
in pulmonary function across the clusters discussed earlier. Patient-Cluster-3 which has 
the lowest cytokine values for both of the above cytokine clusters also has the largest 
number of significant differences in obstructive airway disease parameters in pulmonary 
function testing, and lowest airway reactivity response to methacholine compared to 
Patient-Clusters-1 and -2. This result implies that Patient-Cluster-3 represents a subgroup 
of asthmatics with preserved pulmonary function and greatest response to albuterol 
without active inflammation.

Informed by these underlying molecular processes, the analysis of patients and 
cytokines therefore implies a state-based classification of asthma patients. The results 
also provide evidence for the growing consensus (Bousquet et al., 2010) that asthma is a 

Figure 4. The visual analytical representation showing the interrelationship between 
three patient clusters with three cytokine clusters, and the resulting inferences of pathways 
for each patient cluster based on an integrated understanding of molecular and clinical 
information.
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dynamic disease where the same patient could enter different asthmatic states based on 
environmental and/or other triggers. The biologist and physician concluded that future 
studies that include such information could lead to a better understanding of the 
relationship between triggers and resulting asthmatic states, which could translate into 
more effective personalized treatment and prevention approaches for each patient 
(Bhavnani et al., 2011, p. S29).

The above integration of clinical and molecular information, along with the infer-
ences resulted in two domain publications, and two peer-reviewed methodological 
publications, including an informatics distinguished paper award for defining a new 
molecular-based taxonomy of asthma. The analysis was included as part of the Clinical 
and Translational Science Awards (CTSA) Program proposal to the National Institutes 
of Health (NIH), which was subsequently funded.

Discussion

The micro-level analysis of how visual analytics was used as a computational bound-
ary object in an MTT provided a deeper understanding of evolving representations 
of the data, shifts in primary and supportive roles of the team members, and novel 
translational outcomes:

Evolving Representation

The results suggest that the process of integrating molecular and clinical information 
in a visual representation enabled innovative translational insights. However, the data 
representation and its content evolved through several intermediate states using rep-
resentation shifts (table, network, heatmap with dendrogram), representation trans-
formations (circular network, force-directed network, layered network with clusters, 
layered network with significant clinical variables), and content modifications (raw 
table values, normalized table values, clusters, significance) driven by feedback from 
different team members, and leading to emergent representations and insights. 
Therefore, similar to results reported by other studies on computational boundary 
objects discussed earlier (Daniel et al., 2017; Taylor, 2007), the boundary object was 
not a static object, but rather one that evolved having its own emergent states, in addi-
tion to having emergent effects on team dynamics. However, in contrast to previous 
studies where the boundary object was reported as changing mainly in content (e.g., 
text changes in a blog, graphical additions to a 3D model), here we observe that the 
boundary object in addition to changing in content, also changed in representation by 
shifting and transforming. This distinction between the content and representation of 
a boundary object is critical as it provides the necessary specificity for describing a 
class of boundary objects which can be referred to as computational evolving bound-
ary objects (CEBOs), defined as digital boundary objects that evolve in representa-
tion and content in response to the needs of integrating disciplinary knowledge in 
multidisciplinary teams. Future designs of CEBOs could include interactive features 
such as filtering, layering, and intersecting different types of information in multiple 
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representations and views of the data enabling team members to make fluid and rapid 
modifications to data representations, resulting in new insights for improving health 
outcomes. Such designs will be critical for supporting discoveries in the massive 
amounts of multiomics data including genomic, proteomic, metabolomics, and phe-
nomic from millions of patients becoming available to scientists in the not-too-distant 
future. Therefore, while the evolution of data representations and their content can be 
expected when conducting any computational analysis, analyzing that evolution 
through the lens of a boundary object enabled the definition and design of CEBOs 
from a sociomaterial perspective, with potential impact on the ability of a wide range 
of teams to integrate diverse disciplinary knowledge.

Shifting Primary and Supportive Roles

The results also showed that there was a shift in the primary and supportive roles 
that the team members played at different stages of the analysis. MTTs in medical 
schools tend to have an implied hierarchy with physicians having the highest status, 
and analysts playing an important but supportive role. This hierarchy is exemplified 
by the mainly middle-author status that analysts tend to have in such team publica-
tions. However, the use of the visual analytical representation for enabling novel 
insights required involvement of the different team members with shifting primary 
and supportive roles. While the initial steps of data preparation and visual represen-
tation were led by the visual analyst and the statistician, they required important 
input from the clinician and biologist for designing the visual representation. 
However, this primary role shifted as the data representation became more complex 
and required the domain experts to drive the subsequent changes to the data repre-
sentation and resulting interpretations. In the last stage, the integration of the clus-
ter boundaries determined by the cytokine profiles, together with the clinical 
variables required most of the team working together resulting in the inference of 
the biological pathways. The evolving data representations and their content, based 
on input from different team members, resulted in a more egalitarian team struc-
ture, with different members playing primary and supportive roles at different 
stages. While a shift in the boundaries of roles and relations has been reported in 
several organizational studies (Barrett, Oborn, Orlikowski, & Yates, 2012; Kellogg, 
Orlikowski, & Yates, 2006), here we observe that the primary and supportive roles 
changed throughout the project, revealing a fluid shift of boundaries in response to 
and affecting the evolution of the data representations with no single member domi-
nating the overall contributions. Furthermore, as discussed below, the authorship 
and type of publications also reflected this shift in team boundaries.

Novel Translational Insights

The results show that the visual analytics functioned as a boundary object enabling the 
team to integrate knowledge from visual analytics, statistics, molecular biology, and 
the clinical treatment of asthma, resulting in a novel translational insight of disease 
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mechanisms in each patient cluster. These insights were new and not previously pub-
lished in the team’s prior publications. The novel results were published in two domain 
and two methodological publications (where the visual analyst was first author), sug-
gesting that the intervention was not only instrumental in precipitating novel insights 
but also affected the team dynamics resulting in a more egalitarian team structure. As 
the identification of patient subgroups and their respective biological pathways was an 
innovation that transcended any single discipline, it suggests evidence of “collective 
intelligence” (Woolley, Chabris, Pentland, Hashmi, & Malone, 2010), an emergent 
characteristic of highly successful teams.

Generalization of Results in Other MTTs

Based on the lessons learned from observing the effects of applying the visual ana-
lytical intervention in the Phenotypes of Severe Asthma MTT, we have since used it 
to analyze data sets produced by other MTTs that met the inclusion criteria discussed 
earlier. These include the following three MTTs and their data sets which have been 
analyzed: (a) Prevention of preterm births using data from 22 preterm delivery 
mothers and 28 controls, in addition to their profile on 10 methylation sites; (b) 
reducing hospital readmission using data of 17,402 readmitted patients with chronic 
obstructive pulmonary disease with matched controls from the 2013 Medicare data-
base; and (c) 1,411 Alzheimer’s cases and controls and their profile on 88,709 sin-
gle-nucleotide polymorphisms. Each of the above three teams was led by a physician 
or biologist, and included a statistician and visual analyst.

Our preliminary analysis of the first two MTTs has revealed that the overall outcomes 
are similar to what we observed in the phenotypes of severe asthma MTT. In both teams, 
the representation evolved to integrate clinical or molecular associations with outcomes, 
leading to an insight that the domain experts agreed were worthy of publication. The 
results were published with a focus on domain or methodological contributions with the 
visual analyst either being the sole corresponding author, or being a joint corresponding 
author. However, our approach failed to find any patterns in the data set provided by the 
Alzheimer’s MTT. The network showed nodes appearing to be randomly organized in a 
topology colloquially referred to as the “network hairball.” This limitation of the visual 
analytical approach when analyzing very high dimensional data due to the large number 
of variables, was subsequently addressed through the design of new algorithms that find 
and display patterns in large and dense networks, such as what are increasingly becom-
ing common in MTTs analyzing large data sets (Bhavnani et al., 2017). The interven-
tions in real-world settings with real biomedical data therefore helped reveal the strengths 
and limitations of our visual analytical representation.

Conclusions

Throughout history, humans have assembled into teams to address problems that are 
difficult for individuals to solve alone. Such teams have ranged from villages of peo-
ple collectively growing crops, to armies of soldiers coordinating defenses against 
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invaders. However, a key difference between such teams, and multidisciplinary scien-
tific teams, is the high degree of specialization that scientific team members tend to 
have. While such specialization is necessary for solving complex real-world problems, 
scientific teams face considerable social, cultural, and cognitive barriers reducing a 
team’s ability for knowledge integration and innovation. Here, we explored the role 
that visual analytics can play as a computational boundary object to help integrate 
knowledge across diverse disciplines in an MTT, with the goal of enabling novel 
insights and innovations. The results of testing such an approach led to implications 
for theory and practice.

Implications for Theory

The results suggest that a boundary object was not just a static object, but rather one 
that evolved through several emergent states progressively integrating different types 
of disciplinary knowledge with shifts and transformations in representation, in addi-
tion to changes in content, and ultimately enabling the team to have translational 
insights. Furthermore, the process of evolving the boundary object appeared to make 
the teams more egalitarian as it enabled each member to play primary and supportive 
roles in motivating a change in the representation thereby building a common ground 
for communication critical for generating insights. These results provide support and 
deepen our understanding of boundary objects and their role as an intervention for 
increasing the integrative capacity of scientific teams. Furthermore, the results also 
suggest that the bipartite network’s ability to model patients, characteristics, and clini-
cal outcomes in a unified externalized representation, played an important role in 
enabling the team to progressively integrate biological, clinical, and statistical knowl-
edge. However, our analysis of this intervention in three other MTTs helped reveal a 
critical limitation in the representation when analyzing high-dimensional data, which 
in turn led to new methodological innovations.

Abstracting results from the current and prior studies, future research should explore 
a model for CEBOs which includes (a) states of the boundary object defined by changes 
in representation and content; (b) triggers for evolving the boundary object driven by 
domain and methodological insights from the team members; (c) methods for changing 
the state of the boundary object; (d) roles played by the team members in triggering, 
implementing, and interpreting each new state of the boundary object; and (e) outcomes 
at the level of each change of state, and at the level of the entire project which could 
include insights, innovations, publications, trust, and collective intelligence. Such a 
model should accelerate the design and analysis of CEBOs representing an instance of 
a broad class of “Team-Centered Informatics” approaches that enable multidisciplinary 
scientific teams get an integrated understanding of human biology and disease from 
large and diverse datasets, with the goal of improving health. Besides being useful 
within teams, Team-Centered Informatics solutions could also be useful to integrate 
knowledge across teams and organizations, and across other disciplines beyond 
biomedicine.
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Implications for Practice

As discussed above, the results suggest that the visual analytical approach was effective 
in generating novel translational insights in three of the four MTTs in which we tested the 
intervention. However, because the tools for conducting network visualization and analy-
sis are currently designed for advanced users, the approach required a team member who 
had computational expertise in making the modifications needed by the team. Future 
research should explore how a small set of application features such as layering, filtering, 
and intersecting multiomics variables could enable members of MTTs without extensive 
computational expertise to make rapid changes to CEBOs based on the needs of their 
team. Furthermore, as multidisciplinarity becomes mainstream in science and medicine, 
students and analysts should be taught how to use CEBOs not just as static representa-
tions, but as continuously evolving in content and representation helping to integrate 
diverse information with the goal of enabling translational teams make novel insights.

Such theoretical and practical advances, especially in the age of exploding and 
diverse data in virtually every field, could in the future enable multidisciplinary scien-
tific teams to overcome critical team-centric barriers, with the goal of more effectively 
addressing the increasingly complex real-world problems that humans face.
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