
      Node and Edge Enrichment Analysis through Bipartite Networks:                         
Application to Gene Mutations in Breast Cancer 

Suresh K. Bhavnani PhD1, Jeremy L. Warner MD, MS3, Tianlong Chen PhD1, Weibin Zhang PhD1,                          
Zhou Zhang PhD5, Charles Balch MD4, Sandra Hatch MD2, Suzanne Klimberg MD PhD2, Ning Liao MD PhD6 

1Preventive Medicine and Population Health, 2Cancer Center, University of Texas Medical Branch, Galveston, TX; 3Div. of 
Hematology/Oncology and Dept of BMI, Vanderbilt University, Nashville, TN; 4Div. of Surgery, MD Anderson Cancer Center, 

Houston, TX, USA; 5Burning Rock Biotech, Shanghai, 6Cancer Center, Guangdong General Hospital, Guangzhou, China 

Introduction 

A primary goal of precision medicine is to identify patient subgroups based on how they share key characteristics, and infer 
their underlying disease processes in order to design interventions that are targeted to those processes.1 For example, breast 
cancer patients have been classified into five molecular subtypes (Luminal-A, Luminal-B, Triple-negative/basal like, HER2-
enriched, and Normal-like).2 However, despite the identification of these subtypes, little is understood about why subsets of 
patients have heterogeneous responses to current treatment paradigms.3 For example, while most ER/PR+ HER2- patients (a 
clinical phenotype comprising the Luminal-A, Luminal-B, and Normal-like molecular subtypes) present at an early stage, 
and are cured with surgery and adjuvant therapy, a subset have poor response to current treatments, suggesting the existence 
of yet-to-be discovered molecular and clinical heterogeneities. 

A common approach used to identify subtypes has been through the use of unipartite methods (e.g., k-means clustering, 
hierarchical clustering, and factor analysis), which identify uniclusters such as how patients cluster based on genes, or how 
genes co-occur across patients, with post-hoc approaches such as heatmaps to combine them. However, more recently the 
use of bipartite methods has shown improvements in the accuracy and interpretability of results by identifying biclusters such 
as simultaneously identifying patient subgroups and their frequently co-occurring gene mutations. Here we demonstrate how 
one such method called bipartite networks,4 not only enabled the automatic identification and visualization of patient-gene 
biclusters, but also enabled identification of (a) which biclusters had a significantly higher proportion of patients with a 
specific outcome versus the rest of the data (node enrichment), and (b) which biclusters had genes with a significantly higher 
proportion of a specific mutational type within the cluster versus outside (edge enrichment). We demonstrate the efficacy 
and interpretability of this approach on a dataset of ER/PR+ HER2- Chinese breast cancer patients.  

Method 
Data. We used a subset of data from a previous study5 consisting of 217 Chinese breast cancer patients clinically phenotyped 
as ER/PR+ HER2-, and their mutational profile on 32 candidate genes. Based on their function, the mutations were 
categorized into four types: (1) missense variant, conservative in-frame deletion, conservative in-frame insertion, disruptive 
in-frame deletion, disruptive in-frame insertion, in-frame deletion, in-frame insertion, and fusion; (2) fusion and cm amp if 
they occur at the same time, cn amp); (3) frameshift variant, cn delete, splice acceptor variant, splice donor variant, splice 
region variant, splice variant, start lost, stop gained, stop lost; and (4) synonymous variant. As this subtype has low mortality 
rates, the outcome variables consisted of the fraction of Ki67 protein in tumor cells categorized into low (1-20), mid (21-50), 
and high (>50) levels, and the androgen receptor (AR) status in the tumor categorized as positive or negative. High levels of 
Ki67, and a negative status of AR are strong prognostic biomarkers for aggressive breast cancer in ER/PR+ HER2- patients.6 

Analysis. The analysis consisted of 4 steps: (1) Bicluster Identification and Visualization. (a) Represented the data as a 
bipartite network (Fig. 1), where nodes (circles and triangles) represented either patients or genes, the edges (lines) connecting 
the patient-gene pairs represented the presence of a gene mutation. Furthermore, the patient node color represented status on 
either Ki67 or AR (using separate networks), and the edge color represented one of four mutation types for specific patient-
gene mutation pairs; (b) used bicluster modularity4 to identify the number and boundaries of patient-symptom biclusters and 
the degree of biclustering (Q); (c) measured the significance of Q by comparing it to a distribution of Q generated from 1000 
random permutations of the network; and (d) used the force-directed algorithm Kamada-Kawai to lay out the network, and 
ExplodeLayout7 to separate the identified biclusters to improve their interpretability. (2) Node Enrichment. Used chi-squared 
with FDR correction, to measure the difference in proportion of high, mid, and low Ki67, and the proportion of positive and 
negative AR, in each bicluster compared to the rest of the data. (3) Edge Enrichment. Of those biclusters with significant 
node enrichment, we used chi-squared with FDR correction to measure the proportion of the mutation types for each gene-
patient pair within that bicluster, versus outside that bicluster. (4) Interpretation. A team of oncologists interpreted the results 
based on: (a) the molecular mechanisms in specific biclusters that resulted in significantly high Ki67 and negative AR; and 
(b) potential targeted treatments. 

Results 
Bicluster Identification and Visualization. As shown in Fig. 1, the bipartite network analysis identified 8 biclusters 
consisting of subgroups of breast cancer patients, and their most frequently co-occurring mutated genes, which had significant 
biclusteredness (Q=0.419, p<.001, z=6.0, two-tailed).  



Node Enrichment. Bicluster-A had a significantly 
higher proportion [χ²(1, N=217)=22.81, p<.001] 
of patients with high Ki67, and a significantly 
higher proportion [χ²(1, N=217)=20.59, p<.001] 
of patients with negative AR, compared to the rest 
of the patients. Bicluster-B had a significantly 
higher proportion of patients with low Ki67 [χ²(1, 
N=217)=11.06, p<.01], compared to the rest.  

Edge Enrichment. Bicluster-A: (1) TP53 had a 
significantly higher proportion of Type-1 and 
Type-3 mutations [χ²(1, N=217)=69.49, p<.001]; 
(2) MYC had a significantly higher proportion of 
Type-2 mutations [χ²(1, N=217)=48.95, p<.001]; 
and (3) FGFR1 had a significantly higher 
proportion of Type-2 mutations [χ²(1, N=217) 
=27.14, p<.001]. Bicluster-B: (1) GATA3 had a 
significantly higher proportion of Type-1 and 
Type-3 mutations [χ²(1, N=217)=75.63, p<.001]; 
(2) AKT1 had a significantly higher proportion of 
Type-1 and Type-3 [χ²(1, N=217)=30.67, p<.001]. 

Interpretation. (1) Bicluster-A. This bicluster 
had a significantly higher proportion of patients 
with high Ki67, with Type-1 and Type-3 
mutations more likely to be associated with loss of function, and Type-2 with gain of function. This is because the bicluster 
contained TP53 and RB1, two well-known tumor suppressor proteins, suggesting a loss of function as a driver event. 
Furthermore, the MYC and EGFR oncogenes could be additional drivers explaining the relative enrichment for high Ki67 in 
this cluster. Finally, the co-occurrence of FGFR1/2 and CDK4 suggests potential efficacy for CDK4/6 inhibitors (e.g., 
palbociclib), and for FGFR inhibitors (e.g., erdafitinib), requiring prospective validation. (2) Bicluster-B. This bicluster had 
a significantly higher proportion of patients with low Ki67, and contained AKT1 and GATA3, which might define a distinct 
subtype of patients with differential response to treatment.8 Although treatment data is not yet available, the overall results 
suggest that treatment-emergent resistance could explain the biclustering and node/edge enrichment. For example, the 
bicluster containing ESR1 might represent patients with acquired endocrine therapy resistance9; the bicluster containing 
ERBB2 may represent acquired HER2 mutations10, and the biclusters containing BRCA1/2 are likely enriched for germline 
variants of these mutations, which are mechanistically distinct from other etiologies of breast cancer. 

Conclusions and Future Research. 
The results suggest that node and edge enrichment analysis used in combination with bipartite network analysis and 
visualization enabled a multi-channel interpretation of the data. Our future research will integrate data related to treatment 
responses with the goal of generating testable hypotheses for interventions targeted to specific patient subgroups. 
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Fig. 1. 8 biclusters showing the co-occurrence of 32 genes mutated across 
217 ER/PR+ HER2- Chinese breast cancer patients.  
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