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    Abstract     The exponential growth of biomedical data related to diseases such as 
asthma far exceeds our cognitive abilities to comprehend it for tasks such as bio-
marker discovery, pathway identifi cation, and molecular-based phenotyping. This 
chapter discusses the cognitive and task-based reasons for why methods from visual 
analytics can help in analyzing such large and complex asthma data, and demon-
strates how one such approach called network visualization and analysis can be 
used to reveal important translational insights related to asthma. The demonstration 
of the method helps to identify the strengths and limitations of network analysis, in 
addition to areas for future research that can enhance the use of networks to analyze 
vast and complex biomedical datasets related to diseases such as asthma.  
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18.1         Introduction 

 The explosion of molecular information generated by multidimensional measure-
ments of proteins, genes, and metabolites, coupled with digital access to patient 
clinical records has created unprecedented opportunities for a more comprehensive 
understanding of asthma. However, this explosion of information has also created a 
challenge for researchers, especially those in multidisciplinary translational science 
teams, to comprehend and integrate such disparate and large amounts of informa-
tion. For example, the identifi cation of molecular pathways involved in different 
asthma phenotypes requires an interdisciplinary understanding of (1) biomarkers 
that are co-expressed across different groups of patients, (2) clinical characteristics 
of the patient groups across the biomarkers that are co-expressed, and (3) known 
and novel molecular pathways suggested by the patterns related to molecular and 
clinical patient profi les. 

 One approach to integrate and comprehend such complex information is through 
methods being developed in the new fi eld of visual analytics. In this chapter we 
begin by presenting an overview of the evolving theoretical foundations for visual 
analytics, and the motivations to use methods from this fi eld to analyze asthma data. 
Next, we focus on one form of visual analytics called networks which are particu-
larly useful for analyzing complex molecular and clinical data. In contrast to the 
supervised learning methods (discussed in the last chapter) that use a priori infor-
mation (e.g., cases and controls) to build predictive models, networks are consid-
ered to be an exemplar of unsupervised learning methods which do not use a priori 
information (e.g., cases and controls). We will demonstrate how this approach can 
be been used to identify asthma phenotypes and infer the molecular pathways 
involved in those phenotypes. These analyses reveal the strengths and limitations of 
the method, which are used to defi ne a research agenda for advanced methods to 
enable in the future, comprehension of complex relationships in ever-increasing and 
complex asthma data.  

18.2     Visual Analytics: Defi nition, Motivation, 
and Theoretical Foundations 

 Visual analytics is defi ned as the science of analytical reasoning, facilitated by inter-
active visual interfaces (Thomas and Cook  2005 ). The primary goal of visual ana-
lytics is to augment cognitive reasoning by translating symbolic data (e.g., numbers 
in a spreadsheet) into  visualizations  (e.g., a scatter plot) which can be manipulated 
through  interaction  (e.g., highlight only some data points in the scatter plot). As 
discussed below, visualizations, and interaction with those visualizations, are pow-
erful for helping analysts comprehend complex relationships in asthma data because 
of the nature of human cognition, and the nature of tasks performed by analysts. 
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18.2.1     Motivation for Visualizations 

 Visualizations of data are often powerful because they leverage the massively paral-
lel architecture of the human visual system consisting of the eye and the visual 
cortex of the brain (Card et al.  1999 ). This parallel cognitive architecture enables the 
rapid comprehension of multiple graphical relationships simultaneously, which 
often leads to insights about relationships in complex data such as similarities, 
trends, and anomalies (Thomas and Cook  2005 ). For example, the detection of an 
outlier in a scatter plot is fast because the graphical relationships between the outlier 
and the rest of the points can be processed in parallel by the visual cortex. Such 
parallel processing is independent of the number of non-outlying points and there-
fore scales up well to large amounts of data. In contrast, fi nding an outlier in a 
spreadsheet of numbers involves numerical comparisons to identify the outlier, 
which is dependent on the much slower symbolic processing areas of the human 
brain. Such symbolic processing is serial in nature, and therefore highly dependent 
on the number of data points, which when large can quickly overwhelm an analyst. 
Data visualizations therefore help to shift processing from the slower symbolic pro-
cessing areas of the human brain, to the faster graphical parallel processing of the 
visual cortex enabling processing of large and complex datasets such as those cur-
rently available for asthma. 

 However, not all data visualizations are effective in augmenting cognition. 
For example, an organizational chart of employee names and their locations laid out 
in a hierarchy based on seniority is not very useful if the task is to determine patterns 
related to the geographical distribution of the employees. Similarly, if a chart lacks a 
legend or axes labels, the visualization is diffi cult to comprehend because it cannot be 
mapped to concepts in the data. Finally, a road map pointing south is not very useful 
to a driver who is facing north because it requires a mental rotation of the map before 
it can be useful for navigation. Therefore visualizations need to be aligned with tasks 
(Norman  1993 ), data, and mental representations of the user (Tversky et al.  2002 ), 
before those visualizations can be effective in augmenting cognition.  

18.2.2     Motivation for Interactivity 

 While static visualizations of data can be powerful if they are aligned with tasks, data, 
and mental representations, they are often not suffi cient for comprehending complex 
data. This is because data analysis typically requires many different tasks performed 
on the same data such as discovery, inspection, confi rmation, and explanation 
(Bhavnani et al.  2012 ), each requiring different views of the data. Furthermore, when 
analysis is done in teams consisting of different disciplines, each member often 
requires a different representation of the same data. For example, a molecular biolo-
gist might be interested in which cytokines are co-expressed across patients, whereas 
a clinician might be interested in the clinical characteristics of patients with similar 
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cytokine profi les, and later how they integrate with the molecular information. 
To address these changes in task and mental representation, visualizations require 
interactivity or the ability to transform parts, or the entire visual representation.   

18.3     Theories Related to Visual Analytics 

 Although the fi eld of visual analytics has drawn on theories and heuristics from dif-
ferent disciplines such as cognitive psychology, computer science, and graphic 
design, the development of theories and taxonomies for visual analytics are still in 
early stages of development (Thomas and Cook  2005 ). For example, there are a 
number of attempts to defi ne heuristics for the design of effective visualizations 
(e.g., Tufte  1983 ), and to classify visual analytical representations (e.g., Heer et al. 
 2010 ; Shneiderman  1996 ), and interaction methods at different levels of granulari-
ties and tasks (Yi et al.  2007 ). One such classifi cation attempt categorizes visual 
analytical representations into (1) time series (e.g., line graphs showing how the 
expression of different cytokine change over time), (2) statistical distributions (e.g., 
box-and- whisker plots), (3) maps (e.g., pie charts showing percentages of different 
races at different city locations on the US map), (4) hierarchies (e.g., top-down tree 
showing the management structure of an organization), and networks (e.g., a social 
network of how friends connect to other friends such as on Facebook). Once these 
visualizations are generated, they are considered visual analytical if they enable 
interaction directly or indirectly with part, or all of the information being repre-
sented. Examples for such interactivity include transforming a top-down tree into a 
circular tree, coloring nodes in the tree based on specifi c properties such as gender, 
or dragging a node in the tree to swap its location with another sibling node. 

 It is important to note that visual analytics has considerable overlap with the 
fi elds of scientifi c visualization (focused on modeling real-world geometric struc-
tures such as earthquakes), and information visualization (focused on modeling 
abstract data structures such as relationships). However, visual analytics places a 
large emphasis on approaches that facilitate reasoning and making sense of complex 
information individually and in groups (Thomas and Cook  2005 ), which makes this 
approach particularly pertinent for tasks such as inferring biological pathways from 
molecular and clinical information in translational teams.  

18.4     Network Visualization and Analysis: Making Sense 
of Asthma Molecular and Phenotype Information 

 Networks (Newman  2010 ) are one of the most advanced forms of visual analytics 
because they enable not only an interactive visualization of complex associations, 
but because they are based on a graph representation, also enable the quantitative 
analysis and validation of the patterns that become salient through the 
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visualization. Networks are increasingly being used to analyze a wide range of 
molecular measurements related to gene regulation (Albert  2004 ), disease–gene 
associations (Goh et al.  2007 ), and disease–protein associations (Ideker and 
Sharan  2008 ). A network (also called a graph) consists of a set of nodes, con-
nected in pairs by edges; nodes represent one or more types of entities (e.g., 
patients or cytokines). Edges between nodes represent a specifi c relationship 
between the entities (e.g., a patient has a particular cytokine expression value). 
Figure  18.1  shows a sample bipartite network where edges exist only between 
different types of entities (Newman  2010 ), in this case between patients and 
cytokines. 1 

   Network analysis of biomedical data typically consists of three steps: (1)  explor-
atory visual analysis  to identify emergent bipartite relationships such as between 
patients and cytokines; (2)  quantitative analysis  through the use of methods sug-
gested by the emergent visual patterns; (3)  inference  of the biological mechanisms 
involved across different emergent phenotypes. This three-step method used across 
our earlier studies (Bhavnani et al.  2007 ,  2010a ,  b ) have revealed complex but com-
prehensible visual patterns, each prompting the use of quantitative methods that 
make the appropriate assumptions about the underlying data, which in turn led to 
inferences about the biomarkers and underlying mechanisms involved. Below we 
describe the methods used in each step, and their application to analyze a dataset of 
asthma patients and their cytokine expressions. 

1   Researchers have explored a wide range of network types including unipartite, directed, dynamic, 
and networks laid out in three dimensions to analyze complex data. As this wide range is beyond 
the scope of this chapter, we suggest other excellent sources (Newman  2010 ) for such 
information. 
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  Fig. 18.1    A sample bipartite network where edges exist only between two different types of 
nodes. In this case, nodes represent either patients ( black ) or cytokines ( white ), and edges connect-
ing the two represent cytokine expression       
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18.4.1     Exploratory Visual Analysis 

 Network analysis typically begins by transforming symbolic data into graphical ele-
ments in a network. To achieve this, the analyst needs to decide which  entities  in the 
data represent the nodes in the network, in addition to how other useful information 
can be mapped onto the node’s shape, color, and size. Similarly, the analyst needs to 
decide which  relationships  between the entities in the data are represented by the 
edges in the network, in addition to how to map other useful information to the 
edge’s thickness, color, and style. These selections are made based on an under-
standing of the kinds of relationships that are needed to be explored, and is often an 
iterative process based on an understanding of the domain and the nature of the data. 

 Once the symbolic data has been mapped to graphical elements, the resulting 
network is laid out so the nodes and edges can be visualized. The layout of nodes in 
a network can be done where either the distances between nodes has no meaning 
(e.g., nodes laid out randomly or along a geometric shape such as a line or circle) or 
where the distance between nodes represents a relationship such as similarity (e.g., 
similar cytokine expression profi les). Layouts where distance has meaning are typi-
cally generated through force-directed layout algorithms (Newman  2010 ). For 
example, the application of the  Kamada – Kawai  layout algorithm (well suited for 
small- to medium-sized networks in the range of 50–1,000 nodes) (Kamada and 
Kawai  1989 ; Nooy et al.  2005 ) to a network results in nodes with a similar pattern 
of connecting edge weights to be pulled together and those with different patterns to 
be pushed apart. 

 Figures  18.2 – 18.6  show the steps that were used to generate a bipartite network 
of 83 asthma patients, and 18 cytokines. Figure  18.2  shows how asthma patients, 
were represented as black nodes, and cytokines (molecules involved in intercellular 
signaling) were represented as white nodes. Furthermore, normalized cytokine 
expression values were represented as edges connecting each patient to each cyto-
kine. These nodes were laid out equidistantly around a circle. Figure  18.3  shows the 
same network but where the edge thicknesses are proportional to the normalized 
cytokine expression values. Therefore, thick edges represent higher cytokine expres-
sion values compared to thin edges. Furthermore, the size of the node was made 
proportional to the total expression value of the connecting edges. Therefore, large 
patient nodes have overall higher aggregate cytokine expression values compared to 
smaller patient nodes.

       Although the patients, cytokines, and the cytokine expression have been visually 
represented, the distances between the nodes have no meaning. To better compre-
hend the data, the patients who have higher cytokine expression value for a particu-
lar cytokine should be spatially closer to that cytokine compared to those who have 
lower cytokine expression value. This approach of using short distances between 
entities to show similarity, and long distances between entities to show dissimilarity 
is typical across clustering algorithms. As shown in Fig.  18.4  and reported in 
(Bhavnani et al.  2011a ), application of the force-directed algorithm Kamada–Kawai 
to the circular layout results in nodes that have a similar pattern of cytokine 
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  Fig. 18.2    A bipartite network showing patient nodes ( black ) and cytokine nodes ( white ) con-
nected in pairs by edges which represent normalized cytokine expression. Patient and cytokine 
nodes were separately grouped and randomly laid out equidistantly around a  circle        

  Fig. 18.3    The same network as in Fig.  18.2  but where edge thickness is proportional to the nor-
malized cytokine expression value and the size of each node is proportional to the total expression 
values of the connecting edges.  Thick edges  represent higher cytokine expression values compared 
to  thin edges . Similarly, larger patient nodes have higher aggregate cytokine expression values 
compared to smaller patient nodes       

 

 

18 The Role of Visual Analytics in Asthma Phenotyping and Biomarker Discovery



296

expression to be pulled together, and those that are not similar to be pushed apart. 
The resulting layout suggests that there exist distinct clusters of patients and cyto-
kines. Furthermore, the layout also reveals the intercluster relationships such as 
which patient clusters are most closely related with which cytokine clusters. 

 While the network layout suggests the existence of distinct clusters, it is not 
designed to reveal the members of each cluster. We therefore need to use quantita-
tive methods that are explicitly designed to identify the boundaries of clusters based 
on a multivariate analysis of the data.  

18.4.2     Quantitative Verifi cation and Validation 

 There exist a wide range of quantitative methods to verify and validate patterns 
discovered through network visualization methods. While in principle any statisti-
cal method can be used to quantitatively analyze a pattern observed in a network, 
many patterns are often analyzed using graph-based methods (Newman  2010 ) that 

  Fig. 18.4    Application of Kamada–Kawai, a force-directed algorithm, to the circular layout. The 
algorithm pulls nodes with similar cytokine expression patterns closer together, while pushing 
apart those with dissimilar expression patterns. The layout of the network suggested the existence 
of disjoint patient and cytokine clusters, and revealed intercluster relationships such as how the 
patient clusters express particular cytokine clusters. However, quantitative methods must be used 
to identify cluster boundaries       
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specialize in analyzing complex relationships. For example,  degree assortativity  
measures whether one type of nodes in a network which have high weighted degree 
(e.g., patients who have large nodes in Fig.  18.3 ) are preferentially connected to 
another type of nodes that have high degree (e.g., cytokines that have large nodes in 
Fig.  18.1 ), or vice versa. 

 Another approach that can be used to verify patterns in a network is hierarchical 
clustering (Johnson and Wichern  1998 ). This unsupervised learning method 
attempts to identify the number and boundary of clusters in the data. For example, 
hierarchical clustering can be used to identify clusters of patients based on their 
relationship to cytokines, or clusters of cytokines based on their relationship to 
patients. The method begins by putting each node in a separate cluster, and then 
progressively joins nodes that are most similar based on their relationship to con-
nected nodes. This progressive grouping generates a tree structure called a  dendro-
gram , where distances between subsequent layers of the tree represent the strength 
of dissimilarity between the respective clusters; the larger the distance between 
two subsequent layers, the stronger the clustering. Analysts therefore determine the 

  Fig. 18.5    A heat map where the  rows  represent patients, the  columns  represent cytokines, and the 
 colors  represent normalized cytokine values ( green  = 0,  red  = 1). The  rows  and  columns  are ordered 
based on the results of agglomerative hierarchical clustering. The patient and cytokine dendro-
grams are shown on the  vertical  and  horizontal axes , respectively. Each dendrogram shows a natu-
ral break at three clusters indicated by the  red lines        
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number and membership of the clusters by identifying relatively large breaks 
between the layers in the dendrogram. 

 Given the wide range of quantitative methods available, the patterns in the net-
work are used to guide the selection of the appropriate method. For example, if 
distinct clusters do not exist in a network, then it is not appropriate to apply a clus-
tering algorithm to the network. This approach of selecting methods based on the 
inspection of the data is similar to how statisticians determine whether to use para-
metric or non-parametric inferential methods based on the underlying distribution 
of the data. 

 Because the network in Fig.  18.4  suggested the existence of disjoint clusters, 
hierarchical clustering was used to identify the boundary and members of the clus-
ters. As shown in Fig.  18.5 , the horizontal dendrogram represents the cytokine clus-
ters, the vertical dendrogram represents the patient clusters, and the colored cells 
represent normalized cytokine expression ranging from green (0) to red (1). Each 
dendrogram shows a clear break at three clusters for cytokines, and for patients (as 
shown by the corresponding red dotted lines across each dendrogram). 

 While there may be clear breaks in the dendrograms, the overall pattern could 
have occurred by random chance. Patterns discovered in networks, and subsequently 

  Fig. 18.6    Results of the agglomerative hierarchical clustering from Fig.  18.5  superimposed onto 
the  network  in Fig.  18.4  using  colors  to denote the three cytokine clusters and translucent  shapes  
to denote the three patient clusters. The  network  shows that Patient-Cluster-1 highly expresses 
Cytokine-Cluster-1, while Patient-Cluster-3 highly expresses Cytokine-Cluster-3. The  network  
also shows that Patient-Cluster-2 primarily expresses Cytokine-Cluster-2 and Cytokine-Cluster-1       
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the dendrograms, are therefore validated by determining their signifi cance. One 
approach to do this is to compare the patterns in the data to random permutations of 
the network. 

 To test whether there were signifi cant breaks in the dendrogram (denoting the 
existence of disjoint clusters), the variance, skewness, and kurtosis of the dissimi-
larities (generated by the hierarchical clustering algorithm) in the asthma network 
were compared to 1,000 permutations of the asthma network. For each network 
permutation, the number of nodes and the number of edges connected to each node, 
in addition to the edge weight distribution of patients were preserved when analyz-
ing the cytokine dendrogram, and vice versa. Signifi cant breaks in the asthma 
patient or cytokine dendrograms would result in a signifi cantly larger variance, 
skewness, and kurtosis of the dissimilarity measures, compared to the same mea-
sures generated from the random networks. 

 As reported in (Bhavnani et al.  2011a ) the results showed the clusteredness of the 
patients in the asthma network was signifi cant as measured by the variance of the dis-
similarities (Asthma = 64.95, Random Mean = 20.08,  p  < 0.001 two-tailed test), skew-
ness of the distribution of dissimilarities (Asthma = 4.9, Random Mean = 2.81,  p  < 0.001 
two-tailed test), and kurtosis of the distribution of dissimilarities (Asthma = 30.24, 
Random Mean = 14.78,  p  < 0.001 two-tailed test). Furthermore, the results also showed 
that the clusteredness of the cytokine clusters was signifi cant as measured by the vari-
ance of the dissimilarities (Asthma = 837.62, Random Mean = 46.69,  p  <0.001 two-tailed 
test), the skewness of the distribution of dissimilarities (Asthma = 2.18, Random 
mean = 0.49,  p  < 0.001 two-tailed test), and kurtosis of the distribution of dissimilarities 
(Asthma = 7.25, Random mean = 2.49,  p  < 0.001 two-tailed test). 

 To understand why the patients or cytokines were clustered, and how they related 
to each other, the cluster memberships were superimposed onto the network. 
As shown in Fig.  18.6 , the cytokine nodes were colored to denote their membership 
in three separate clusters. In contrast, the patient clusters were denoted by closed 
translucent shapes to enable visual discrimination between patient and cytokine 2  
clusters. As shown, Patient-Cluster-1 and Patient-Cluster-3 are enriched with 
Cytokine-Cluster-1 and Cytokine-Cluster-3, respectively. However, Patient-
Cluster- 2 is enriched with Cytokine-Cluster-1 and Cytokine-Cluster-2. The results 
of the quantitative analysis superimposed over the network visualization therefore 
helped to identify the intercluster relationships in the data.  

2   Such visual design decisions are currently loosely based on graphic design heuristics (Johnson 
and Wichern  1998 ) such as limiting the number of colors in the visualization to reduce visual 
overload. However, successful visualizations are often based on the graphic design expertise of the 
analyst who explores many variations of a visualization, and uses judgment to determine which 
one is most effective for the data, task, and mental representations of the domain experts who will 
be interpreting the results. 
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18.4.3     Inference of Biological Mechanisms and Asthma 
Phenotypes 

 While the visual and quantitative analysis helped to reveal patterns in the data, the 
ultimate goal of the network analysis is to infer the biological mechanisms involved, 
and the emergent sub-phenotypes in the data. This inferential step requires an inte-
grated understanding of the molecular and clinical variables. One approach is to 
analyze how the patients in each emergent cluster (based on molecular profi les) 
differ in their clinical variables. This can be done with well-known statistical tests 
such as Kruskal–Wallis, a nonparametric test used to determine if the median of a 
variable is signifi cantly different across many groups such as the clusters. 

 The Kruskal–Wallis test revealed patterns of pulmonary function across the three 
patient clusters (Bhavnani et al.  2011a ). As shown in Table  18.1 , four out of six 
pulmonary function measures were signifi cantly different across the three clusters. 
In addition, we conducted a pairwise intercluster analysis, which revealed that 
Patient-Cluster-3 had three lung functions (Max FEV1pp/MPVLung, Baseline 
FEV1pp, and PC 20  Methacholine) that were signifi cantly higher than Patient-
Cluster- 1, and one lung function (Max FVCpp/MPVLung) that was signifi cantly 
higher than Patient-Cluster-2. In contrast, Patient-Cluster-1, had only one lung 
function (Max FVCpp/MPVLung) that was signifi cantly higher than Patient-
Cluster-2. Patient-Cluster-3 therefore had less baseline airway obstruction (both 
FEV1 values were signifi cantly higher), less hyper-reactivity to methacholine chal-
lenge (signifi cantly higher PC20 Methacholine), and preserved pulmonary capacity 
(signifi cantly higher FVC values) compared to the other two patient clusters.

   The molecular and clinical profi les of the patients therefore helped to identify 
hypotheses for the mechanisms involved in asthma. As discussed in (Bhavnani et al. 

  Table 18.1    Comparison of 
six independent pulmonary 
functions across the three 
patient clusters identifi ed by 
the network analysis  

 Pulmonary function   p  value with FDR correction 

 Max FVCpp/MPVLung  0.006* 
 Max FEV 1 pp/MPVLung  0.0375* 
 Baseline FEV 1 pp  0.0375* 
 Baseline FEV 1 /FVC  0.1944 
 Max FEV 1  reversal  0.583 
 PC 20  methacholine  0.0375* 

  Signifi cant differences between the groups are indicated 
by asterisks based on a one-way, two-tailed Kruskal–
Wallis test with an FDR correction. ( FVC  forced vital 
capacity,  FEV   1   forced expiratory volume in 1 s,  PC   20   
 methacholine  dose of methacholine that produces 20 % 
fall in FEV 1 ,  FEV   1    albuterol reversal  percent change in 
FEV 1  in response to albuterol inhalation,  MPV  maximal 
postbronchodilator value,  pp  percent predicted). 
Permission pending  
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 2011a ) the co-occurrence of Eotaxin and IL-4 (Cytokine-Cluster-1) is well aligned 
with a known sequence of molecular changes in asthma patients who often have a 
T-helper-2 (Th 2 ) lymphocyte-skewed immune response. This response results in the 
secretion of IL-4, which in turn triggers Eotaxin production by bronchial epithelial 
cells (Fujisawa et al.  2001 ). The resulting downstream actions include the activation 
and recruitment of tissue-resident eosinophils, a hallmark of early-stage asthma. 
The presence of Eotaxin and IL-4 in lung fl uids therefore appears to indicate key 
substages of a complex molecular pathway in asthma, which explains their high co- 
occurrence in the network. 

 To comprehend the biological signifi cance of cytokines in Cytokine-Cluster-2 
(IL-5, IFN-γ, MIP1a, MIG, IL-17, and MIP-1β), they were entered into the Ingenuity 
Pathway Analysis (IPA) application. The results suggest that the frequent co- 
occurrence of these cytokines is regulated by the innate infl ammatory nuclear 
factor-κB pathway (NF-κB). NF-κB is a potent pro-infl ammatory transcription fac-
tor that activates expression of cytokine networks. In addition, persistent NF-κB 
activation has been linked to uncontrolled/acute exacerbations of asthma (Gagliardo 
et al.  2003 ). The frequent co-occurrence of this set of cytokines therefore implies 
the presence of a distinctly different pro-infl ammatory state, when compared to the 
IL-4–Eotaxin process discussed above. 

 The above cytokine clusters combined with the pulmonary functions of the 
patients, provide a biological explanation for the patient clusters. The strong rela-
tionship of Patient-Cluster-1 to Cytokine-Cluster-1 suggests that patients in this 
cluster have disease driven primarily by Th 2  infl ammation. In contrast, Patient-
Cluster- 2 has a strong relationship to both Cytokine-Clusters-1 and -2. This result 
implies that patients in Patient-Cluster-2 have a component of activated innate 
infl ammatory pathways. Additional evidence for this inference of state-based clus-
ters is evidenced by differences in pulmonary function across the clusters discussed 
earlier. Patient-Cluster-3 which has the lowest cytokine values for both of the above 
cytokine clusters also has the largest number of signifi cant differences in obstruc-
tive airway disease parameters in pulmonary function testing, and lowest airway 
reactivity response to methacholine compared to Patient-Clusters-1 and -2. This 
result implies that Patient-Cluster-3 represents a subgroup of asthmatics with pre-
served pulmonary function and greatest response to albuterol without active 
infl ammation. 

 Informed by these underlying molecular processes, the network analysis of 
patients and cytokines therefore implies a state-based classification of asthma 
patients. The results also provide evidence for the growing consensus 
(Bousquet et al.  2010 ) that asthma is a dynamic disease where the same patient 
could enter different asthmatic states based on environmental and/or other 
triggers. Future studies that include such information could lead to a better 
understanding of the relationship between triggers and resulting asthmatic 
states, which could translate into more effective personalized treatment and 
prevention approaches for each patient.   
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18.5     Strengths and Limitations of Network Analysis 

 Network analysis has several strengths and limitations, whose understanding can 
lead to informed uses of the method, appropriate interpretation of the results, and 
insights for future enhancements and complementary methods. 

18.5.1     Strengths 

 Network visualization and analysis provide four distinct strengths for enabling 
rapid discovery of patterns in complex biomedical data.

    1.    Networks (that are based on graph theory) provide a tight integration between 
visual and quantitative analysis. For example, as shown in the Fig.  18.6 , net-
works enable the simultaneous visualization of multiple raw values (e.g., patient–
cytokine associations, cytokine values, patient attributes), aggregated values 
(e.g., sum of cytokine values), and emergent global patterns (e.g., clusters) in a 
uniform representation. This uniform visual representation leverages the parallel 
processing power of the visual cortex enabling the comprehension of complex 
multivariate, quantitative relationships.   

   2.    Networks do not require a priori assumptions about the relationship of nodes 
within the data, in contrast to hierarchical clustering or k-means which assume 
the data is hierarchically organized or contain disjoint clusters, respectively. 
Instead, by using a simple pairwise representation of nodes and edges, network 
layouts enable the identifi cation of multiple structures (e.g., hierarchical, dis-
joint, overlapping, nested) in a single representation (Nooy et al.  2005 ). 
Therefore, while layout algorithms such as Kamada–Kawai depend on the force- 
directed assumption and its implementation, such algorithms are viewed as less 
biased for data exploration because they do not impose a particular cluster struc-
ture on the data, often leading to the identifi cation of more complex structures in 
the data (Bhavnani et al.  2010a ). The overall approach therefore enables a more 
informed selection of quantitative methods to verify the patterns in the data.   

   3.    Networks preserve highly correlated variables (such as cytokines) and display 
them through clustering. Furthermore, the bipartite network representation 
enables the comprehension of intercluster relationships such as between variable 
(e.g., cytokines) clusters and patient clusters. These features provide important 
clues to domain experts about the pathways that involve those variables. This is 
in contrast to many supervised learning methods which drop highly correlated 
variables in an attempt to identify a small number of variables that together can 
explain the maximum amount of variance in the data. While this approach is 
powerful for developing predictive models, the reduction in variables could limit 
the inference of biological pathways involved in the disease.   

   4.    Networks enable high interactivity enabling the rapid modifi cation of the visual rep-
resentation to match the changing task and representation needs of analysts during 
the analysis process. For example, nodes that represent patients in a network can be 
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interactively colored or reshaped to represent different variables such as gender and 
race, enabling the discovery of how they relate to the rest of the network.      

18.5.2     Limitations 

 Networks have three important limitations that need to be understood for their 
proper use.

    1.    While node shape, color, and size can represent different variables, there is a 
limit on the number of variables that can be simultaneously represented. 
Furthermore, a visual representation can get overloaded with too many colors 
and shapes, which can mask rather than reveal important patterns in the data. 
Therefore, while networks can reveal complex multivariate patterns in the data 
based on a few variables, they often require complimentary visual analytical 
representations such as Circos ideograms (Krzywinski et al.  2009 ; Bhavnani 
et al.  2011b ) to explore data that is high dimensional (e.g., large number of attri-
butes related to entities such as patients in the network).   

   2.    While networks provide a rich vocabulary of graphical elements to represent 
data, their design and use requires iterative refi nement based on an under-
standing of the domain, knowledge of graphic design and cognitive heuris-
tics, and the use of complex interfaces that are designed for those facile in 
computation. This combination of knowledge required to conduct network 
analyses makes domain experts dependent on network analysts to generate 
and refi ne the representations, which can limit the rapid exploration and 
interpretation of complex data.   

   3.    While network layout algorithms are designed to reveal complex and unbiased 
patterns in multivariate data, they often fail to show any patterns in the data 
resulting in what is colloquially called a “hairball.” In such cases, the nodes 
appear to be randomly laid out providing little guidance for how to proceed with 
the analysis. While network applications offer many interactive methods to fi lter 
data such as by dropping edges and nodes based on different thresholds, many of 
these methods are arbitrary and therefore unjustifi able to use when searching for 
patterns especially in important domains such as biomedicine. There is therefore 
a need to develop more systematic and defensible methods to fi nd hidden pat-
terns in network hairballs.       

18.6     Future Directions in Network Analysis Related 
to the Analysis of Biomedical Data 

 The limitations of networks discussed above motivate three important future 
research directions to make network analysis more effective for the analysis of bio-
medical data such as those related to asthma: (1) As nodes can only represent a 
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limited number of variables simultaneously, there is a need to use complementary 
visual analytical representations. This motivates the development of a framework 
designed to guide the selection and use of multiple visual analytical representations 
based on the nature of the tasks and of data. (2) Because network analyses currently 
require many iterations to design the representation through the use of complex 
interfaces, there is a need for systems that are streamlined for specifi c tasks such as 
biomarker discovery. (3) Given that many network layouts show no structure, future 
algorithms should attempt to integrate methods from supervised learning to enable 
the discovery of hidden patterns. These research directions could enable the rapid 
discovery of patterns in the age of big data and translational medicine.     
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