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14.1 Introduction

The Open Science movement (e.g., data from NIH-funded studies being made

publicly available), combined with digital access to patient clinical records, in

addition to rapid advances in the development of inexpensive high throughput

technologies (e.g., multiplex assays for measuring whole genome data across

many patients) has resulted in vast digital resources accessible by both scientists

and the lay public (Molloy 2011). However, the sheer magnitude of such resources

far exceeds our cognitive abilities to exploit them for the prevention, diagnosis, and

treatment of diseases. For example, translational teams consisting of biologists,

clinicians, and epidemiologists increasingly need to integrate and comprehend the

relationships among large and disparate types of information including molecular,

biochemical, and environmental variables, with the goal of comprehending com-

plex phenomena such as heterogeneities and corresponding pathways underlying

different diseases.
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One approach to integrate and comprehend such vast and disparate information

is through methods being developed in the new field of visual analytics. This

chapter begins by presenting an overview of the evolving theoretical foundations

for visual analytics, and the cognitive and task-based motivations to use methods

from this field to help comprehend complex biomedical data. Next, the chapter

provides a brief overview of visual analytical applications in the biomedical

domain, with a demonstration of how to use one of the most advanced forms of

visual analytics called networks, which are particularly useful for analyzing com-

plex molecular and clinical data. These analyses reveal the strengths and limitations

of network analysis, which are critical for its practical use to analyze ever increas-

ing and complex biomedical data. The chapter concludes with theoretical, applied,

and pedagogical hurdles that need to be addressed through future, research which

will enable visual analytics to fully realize its potential in accelerating biomedical

discoveries.

14.2 Visual Analytics: Theoretical Foundations

Visual analytics is defined as the science of analytical reasoning, facilitated by

interactive visual interfaces (Thomas and Cook 2005). The primary goal of visual

analytics is to augment cognitive reasoning by translating symbolic data (e.g.,

numbers in a spreadsheet) into visualizations (e.g., a scatter plot) which can be

manipulated through interaction (e.g., highlight only some data points in the scatter

plot). As discussed below, visualizations, and interaction with those visualizations,

are powerful for helping analysts comprehend complex relationships in biomedical

data because of the nature of human cognition, and the nature of tasks performed by

analysts.

14.2.1 Why Do Visualizations Matter?

Visualizations of data are often powerful because they leverage the massively

parallel architecture of the human visual system consisting of the eye and the visual

cortex of the brain (Card et al. 1999). This parallel cognitive architecture enables

the rapid comprehension of multiple graphical relationships simultaneously, which

often leads to insights about relationships in complex data such as similarities,

trends, and anomalies (Thomas and Cook 2005). For example, Fig. 14.1a shows a

spreadsheet representing the systolic blood pressure of patients before and after

taking a drug. The task of determining which of the two conditions have more

patients with systolic >140 is time consuming and error prone because the analyst

has to compare the number in each cell with 140, remember the result of each

comparison, and then make a final count to determine which column has a higher

number of patients with systolic>140. Such symbolic processing is serial in nature,
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and therefore highly dependent on the number of data points, which when large can

quickly overwhelm an analyst.

In contrast, as shown in Fig. 14.1b, if all cells in the spreadsheet with values

>140 are colored red, the resulting visual representation enables processing of red

cells in each column to be conducted in parallel, resulting in a more rapid deter-

mination that the left column has more red cells compared to the right column. Such

parallel processing is independent of the number of cells, and therefore scales up

well to large amounts of data. Data visualizations therefore help to shift processing

from the slower symbolic processing areas of the human brain, to the faster

graphical parallel processing of the visual cortex enabling detection of patterns in

large and complex biomedical data sets. Furthermore, by externalizing key aspects

of the task, the representation in Fig. 14.1b shifts information from an internal to an

external representation, making other tasks such as counting the number of patients

with systolic >140 in each column much easier (Zhang and Norman 1994).

Unfortunately, not all data visualizations are effective in augmenting cognition.

For example, a road map pointing south is not effective for a driver who is facing

north because it requires a mental rotation of the map before it can be useful for

navigation. Similarly, an organizational chart of employee names and their loca-

tions laid out in a hierarchy based on seniority is not very useful if the task is to

determine patterns related to the geographical distribution of the employees.

Finally, if a chart has an incorrect or missing legend and axes labels, the visuali-

zation is difficult to comprehend because it cannot be mapped to concepts in the

data. Therefore visualizations need to be aligned with mental representations of the

Fig. 14.1 An example of how symbolic data in a spreadsheet (a) when converted into a visual

representation (b) leverages the parallel processing abilities of the visual cortex which enables

faster comprehension of patterns in the data. Because visual processing is parallel in nature, it

scales to handle large amounts of data. When the same data is sorted by gender (c), the visual

representation reveals yet another pattern demonstrating how interaction with the data is a critical

aspect of visual analytics, and can guide the verification of the patterns using the appropriate

quantitative measures
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user (Tversky et al. 2002), tasks (Norman 1993), and data, before those visualiza-

tions can be effective in augmenting cognition.

14.2.2 Why Does Interactivity Matter?

While static visualizations of data can be powerful if they are aligned with mental

representations, tasks, and data, they are often insufficient for comprehending

complex data. This is because data analysis typically requires many different

tasks performed on the same data such as discovery, inspection, confirmation,

and explanation (Bhavnani et al. 2012), each requiring different transformations

of the data. For example, if the task in Fig. 14.1b is to understand the relationship of

the drug to gender, then the data can be sorted based on gender. As shown,

interaction with the data through such sorting reveals that the drug has no effect

on females (low values remain low, and high values remain high), whereas it has a

dramatic effect on lowering systolic values in males (all high values become low).

Therefore, while it is well accepted that interactivity is crucial for the use of most

computer systems, interaction with data visualizations can help to reveal relation-

ships that are otherwise hidden when using a single representation of the data.

Interactivity is also critical when analysis is done in teams consisting of different

disciplines, where each member often requires a different representation of the

same data. For example, a molecular biologist might be interested in which genes

are co-expressed across patients, whereas a clinician might be interested in the

clinical characteristics of patients with similar gene profiles, and later how they

integrate with the molecular information. To address these changes in task and

mental representation, visualizations require interactivity or the ability to transform

parts, or the entire visual representation.

14.2.3 Theories Related to Visual Analytics

Although the field of visual analytics has drawn on theories and heuristics from

different disciplines such as cognitive psychology, computer science, and graphic

design, the development of theories and taxonomies for visual analytics are still in

early stages of development (Thomas and Cook 2005). For example, there are a

number of attempts to classify visual analytical representations (Heer et al. 2010;

Shneiderman 1996), and interaction intents at different levels of granularities

(Yi et al. 2007; Amar et al. 2005).

One attempt to classify visual analytical representations groups them into

(1) time series (e.g., line graphs showing how the expression of different genes

change over time), (2) statistical distributions (e.g., box-and-whisker plots),

(3) maps (e.g., pie charts showing percentages of different races at different city

locations on the US map), (4) hierarchies (e.g., top-down tree showing the
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management structure of an organization), and networks (e.g., a social network of

how friends connect to other friends such as on Facebook). Once these visualiza-

tions are generated, they are considered visual analytical if they enable interaction

directly or indirectly with part, or all of the information being represented. Exam-

ples for such interactivity include transforming a top-down tree into a circular tree,

coloring nodes in the tree based on specific properties such as gender, or dragging a

node in the tree to swap its location with another sibling node.

Similarly, there have been several attempts to classify interactions with visual-

izations at different levels of granularity. For example, Amar et al. (2005) proposed

8 low-level interaction intents: retrieve value, filter, compute derived value, find

extremum, sort, determine range, characterize distribution, find anomalies, and

cluster and correlate. In contrast, Yi et al. (2007) proposed 6 higher level interaction

intents typically used: select, explore, reconfigure, encode, abstract/elaborate, filter

and connect.

While the above classifications of visual analytical representations and interac-

tion with them are useful as check lists for building effective visual analytical

systems, they do not provide an integrated understanding of how they work together

to enable analytical reasoning, a primary goal of visual analytics. To address this

gap, Liu and Stasko (2010) proposed a framework which integrates visual repre-

sentation, interaction, and analytical reasoning. The framework specifies that cen-

tral to reasoning with an external visual analytical representation (e.g., the table in

Fig. 14.1b) is a mental model which is an analog of the external representation

stored in working memory, and which is “runnable” to enable reasoning of the data

and relationships. This is achieved by creating a mental model in working memory

which is a “collage” of some or all of the structural, semantic, and elemental details

present in the visual representation, in addition to other information from long term

memory relevant to the task. For example as shown in Fig. 14.1b, an analyst

conducting the task of determining which of the two columns have more patients

with systolic >140 might construct a mental model in working memory consisting

of two columns with cells colored red and white, but excluding elements such as the

numbers in the cells. Similar to the speed of accessing information stored in the

memory of a computer versus from disk, a mental model stored in the brain’s
working memory can be used to rapidly achieve tasks such as determining which of

the two columns have more red cells, or even determining that the first column has

approximately three times more red cells compared to the second column.

The framework further specifies that because working memory has size con-

straints, a mental model can typically contain only some of the information present

in the external visualization at any given time. Therefore, when the task changes, it

motivates a tight interactive coupling between the internal mental model and the

external visual representation, through which new information is extracted from the

existing state of the visualization or from long term memory, irrelevant information

in the mental model is discarded to make room for new information, the external

visual representation itself is transformed to reveal new relationships, or the

conceptual information is externalized onto the visual representation to enable

future tasks. For example, when the task described in Fig. 14.1 involves exploring
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or determining the relationship of systolic blood pressure to gender, then a tight

coupling between the internal and external representations is triggered enabling the

extraction of gender-related information and its relationship to systolic blood

pressure. This can be done either by extracting the information from the current

representation (requiring often costly mental manipulations) to identify patterns, or

by transforming the external representation through manipulations such as sorting

(requiring relatively cheaper physical actions) to reveal new relationships, which

are then immediately available for internal reasoning tasks such as determining

inequalities between the columns. Furthermore, information about the current or

previous task such as a discovered pattern can be externalized onto the visual

representation through annotations, and therefore freeing up working memory for

subsequent tasks.

The framework proposes that the coupling of internal and external representa-

tions can be characterized by three interacting goals: (1) External anchoring or the

process of connecting conceptual structures (e.g., systolic blood pressure >140) to

material elements of the visualization (red colored cells), (2) Information foraging
or the process of exploring the external visual representation through extraction

(e.g., counting the red cells related to female patients) or through transformation

(e.g., sorting) of the representation, and (3) Cognitive offloading or the process of

transferring a conceptual structure onto the visual representation to reduce working

memory demands (e.g., encircling or annotating in Fig. 14.1c all female patients

who have systolic >140 before and after taking the drug).

While the above integrated framework of visual representation, interaction, and

analytical reasoning still needs to be elaborated into a theory and tested through

predictive models, it provides a first step into how the critical concepts of visual

analytics could be working together to enable analytical reasoning, leading to

implications for the design and evaluation of effective visual analytical systems.

Finally, it is important to note that visual analytics has considerable overlap with

the fields of scientific visualization (focused on modeling real-world geometric

structures such as earthquakes), and information visualization (focused on model-

ing abstract data structures such as relationships). However, as described above,

visual analytics places a large emphasis on approaches that facilitate reasoning and

making sense of complex information individually and in groups (Thomas and

Cook 2005).

14.3 Visual Analytics: Biomedical Applications

The use of visual analytical representations is increasingly becoming pervasive in

the biomedical domain. The selection of visual analytical representations is highly

dependent on the users of the information and their goals, which can be classified in

the following two broad categories:
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14.3.1 Information Consumers

The primary goal of information consumers is to make biomedical information

actionable in terms of directly affecting change in health-related behaviors. An

important class of information consumers is patients and care providers whose

primary goal is to track and modify personal health and life style behaviors through

the use of biomedical and social data. For example, the website PatientsLikeMe
(2014) enables users to input health and lifestyle variables of specific individuals.

As shown in Fig. 14.2, this information is displayed using visual analytical repre-

sentations such as longitudinal charts and graphs which can be modified to display

Fig. 14.2 A visual analytical display of patient information provided by PatientsLikeMe, a

website that enables patients and caregivers to upload information about individuals, and search

for other patients with a similar condition (Reprinted by permission from Macmillan Publishers

Ltd: Nature Biotechnology (Brownstein et al. 2009), copyright 2009)
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different granularities of data. Users can also find patients who are similar to their

profile, and learn about their real-world experiences of dealing with their diseases,

with the goal of improving the quality of life for themselves or for those they

provide care. Similarly, personal and wearable activity monitors (e.g., fitbit) have

been developed to motivate behavior change such as weight loss by monitoring how

many steps a user has taken on a particular day, and displaying that information on a

smart phone using visualizations such as a progress bar and the recommended

target. Such information can be shared with other users in a social network to

provide additional motivation through competition.

Another important class of information consumers consists of healthcare pro-

viders such as physicians and first-responders whose primary goal is to make

healthcare decisions relevant to specific patients and situations by extracting rele-

vant information from databases such as electronic health records. For example, the

Twinlist system (Plaisant et al. 2013) was developed to reconcile multiple lists of

drugs (e.g., from the hospital records versus what the patient reports taking)

associated with a patient by graphically displaying what is similar and different

among the different lists. The goal of this prototype was to enable caregivers to

rapidly reconcile contradictory information with the goal of reducing errors in

treatment.

A third class of information consumers consists of policy makers from federal

and state agencies whose primary goal is to make policy decisions based on public

health information. For example, the Centers of Disease Control provides interac-

tive maps showing the incidence of different disease outbreaks across the US (CDC

2014), with the goal of enabling faster response.

Given that the primary goal of information consumers is to make specific forms

of biomedical information actionable, an active area of research is to determine

which visual analytical representations are appropriate for which classes of users

and goals, and to design and evaluate systems which are easy to learn, and intuitive

to use (Shneiderman et al. 2013). For example, while interactive time series, maps,

and hierarchies when designed carefully are considered easy to comprehend and to

interact with, other representations such as networks with more than a few dozen

nodes are considered more difficult to comprehend and tend to be avoided as

representations for information consumers.

14.3.2 Information Analysts

In contrast to information consumers, the primary goal of information analysts in

academic and industrial settings is to make contributions to biomedical scientific

knowledge. While the goal of all biomedical information users is to ultimately

improve health outcomes, the process of reaching that long-term goal is achieved

by information analysts through progressive contributions to scientific knowledge.

An important class of information analysts consists of biologists and bioinfor-

maticians whose primary goal is to decipher the biological mechanisms involved
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in different diseases. For example, biologists often use network visualization and

analysis tools like Cytoscape (2014) to comprehend complex disease-protein asso-

ciations (Ideker and Sharan 2008) with the goal of deciphering the functions and

pathways related to proteins of interest.

A second class of information analysts consists of clinical researchers and

medical informaticians whose primary goal is to develop new methods to improve

patient treatment by analyzing the relationship between clinical variables and out-

comes. For example, networks visualizations have been used to analyze Medicare

claims from more than 30 million patients, which enabled researchers to infer

patterns in the progression of different diseases (Hidalgo et al. 2009). One of the

their observations was that that highly connected nodes in the network had high

lethality implying that patients with such diseases are more likely to have an

advanced stage of disease.

A third class of information analysis consists of epidemiologists whose primary

goal is to analyze public health information. For example as shown in Fig. 14.3,

Christakis and Fowler (2010) found that the flu infection in a social network

consisting of Harvard students peaked two weeks earlier compared to a random

set of students from the same population. Such advanced warning could be effective

for planning immunizations during outbreaks of infectious diseases.

An active area of visual analytics research is to develop new approaches that

integrate molecular, clinical, and epidemiological information, in a single repre-

sentation. For example, translational scientists working in teams have used network

visualization and analyses to integrate molecular and clinical information with the

Fig. 14.3 Progression of the flu infection through a social network of students from Harvard

University (Christakis and Fowler 2010). The red nodes represent infected students, the yellow
nodes represent friends of infected students, and the edges connecting the nodes represent self-

reported friendship links (Reprinted under the Creative Commons Attribution license)
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goal of inferring heterogeneity in asthma, and the respective biological mechanisms

(e.g., Bhavnani et al. 2014a, b).

Given the importance of networks for the analysis and presentation of complex

relationships in a wide range of data types, and because it is one of the most

advanced form of visual analytics, the rest of this chapter focuses on providing a

concrete understanding of this approach as applied to the integrative analysis of

molecular and clinical information.

14.4 Network Analysis: Making Discoveries in Complex
Biomedical Data

Networks (Newman 2010) are an effective representation for analyzing biomedical

data because they enable an interactive visualization of complex associations.

Furthermore, because they are based on a graph representation, they also enable

the quantitative analysis and validation of the patterns that become salient through

the visualization. Networks are increasingly being used to analyze a wide range of

molecular measurements related to gene regulation (Albert 2004), disease-gene

associations (Goh et al. 2007), and disease-protein associations (Ideker and Sharan

2008). A network (also called a graph) consists of a set of nodes, connected in pairs

by edges; nodes represent one or more types of entities (e.g., patients or genes).

Edges between nodes represent a specific relationship between the entities (e.g., a

patient has a particular gene expression1 value). Figure 14.4 shows a sample

bipartite network where edges exist only between different types of entities (New-

man 2010), in this case between patients and genes.2

Network analysis of biomedical data typically consists of three steps: (1) explor-

atory visual analysis to identify emergent bipartite relationships such as between

patients and genes; (2) quantitative analysis through the use of methods suggested

by the emergent visual patterns; (3) inference of the biological mechanisms

involved across different emergent phenotypes. This three-step method used across

several studies (Bhavnani et al. 2010, 2011b, 2012) have revealed complex but

comprehensible visual patterns, each prompting the use of quantitative methods

that make the appropriate assumptions about the underlying data, which in turn led

to inferences about the biomarkers and underlying mechanisms involved. Each of

the three steps of this method is described below, followed by its application to

analyze a data set of subjects and gene expressions.

1 Gene expression is the process by which the information in a gene is translated into a gene

product such as a protein which can be involved in biological processes like inflammation during

an infection.
2 Researchers have explored a wide range of network types including unipartite, directed, dynamic,

and networks laid out in three dimensions to analyze complex data. As this wide range is beyond

the scope of this chapter, we suggest other excellent sources (Newman 2010) for such information.
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14.4.1 Exploratory Visual Analysis

Network analysis typically begins by transforming symbolic data into graphical

elements in a network. To achieve this, the analyst needs to decide which entities in
the data represent the nodes in the network, in addition to how other useful

information can be mapped onto the node’s shape, color, and size. Similarly, the

analyst needs to decide which relationships between the entities in the data are

represented by the edges in the network, in addition to how to map other useful

information to the edge’s thickness, color, and style. These selections are made

based on an understanding of the kinds of relationships that need to be explored,

and is often an iterative process based on an understanding of the domain and the

nature of the data being processed.

Once the symbolic data has been mapped to graphical elements, the resulting

network is laid out so the nodes and edges can be visualized. The layout of nodes in

a network can be done where either the distances between nodes has no meaning

(e.g., nodes laid out randomly or along a geometric shape such as a line or circle), or

where the distance between nodes represents a relationship such as similarity (e.g.,

similar cytokine expression profiles). Layouts where distance has meaning are

typically generated through force-directed layout algorithms. For example, the

application of the Kamada-Kawai (1989) layout algorithm to a network results in

nodes with a similar pattern of connecting edge weights to be pulled together, and

those with different patterns to be pushed apart.

Figures 14.5, 14.6, 14.7 and 14.8 show the steps that were used to generate a

bipartite network of 101 subjects and 18 genes, data which is described in more

detail in the original study (Ioannidis et al. 2012). The 101 subjects consisted of

28 influenza (flu), and 51 respiratory syncytial virus (RSV) cases, and 22 age,

Fig. 14.4 A sample bipartite network where edges exist only between two different types of

nodes. In this case, nodes represent either patients (black) or genes (white), and edges connecting

the two represent gene expression
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gender, and race matched healthy controls. The 18 genes were highly significant,

differentially-expressed genes that were common to both infections. The goal of

this analysis was to identify subgroups of cases that had different molecular profiles

and therefore could suggest sub-phenotypes that require different treatments. Fig-

ure 14.5 shows how the three types of subjects were represented as RSV (gray

triangles), flu (gray diamonds), and controls (gray squares), and the genes were

represented as circular black nodes. Furthermore, normalized gene expression

values were represented as edges connecting each subject to each gene. These

nodes were laid out equidistantly around a circle. Figure 14.6 shows the same

network but where the edge thicknesses are proportional to the normalized gene

expression values. Therefore, thicker edges represent higher gene expression values

as compared to the thinner edges. Furthermore, the size of the node was made

proportional to the total expression value of the connecting edges. Therefore, larger

patient nodes have overall higher aggregate gene expression values compared to

smaller patient nodes.

Fig. 14.5 A bipartite network showing subject nodes (RSV patients¼ triangles, flu

patients¼ diamonds, and controls¼ squares) and gene nodes (black circles) connected in pairs

by edges, which represent normalized gene expression. Patient and gene nodes were separately

grouped and randomly laid out equidistantly around a circle
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Although the patients, genes, and the gene expression have been visually

represented, the distances between the nodes have no meaning. To better compre-

hend the data, the subjects that have higher expression value for a particular gene

should be spatially closer to that gene compared to those that have lower gene

expressions. This approach of using short distances between entities to show

similarity, and long distances between entities to show dissimilarity is typical

across clustering algorithms. As shown in Fig. 14.7 and previously reported

(Bhavnani et al. 2014a, b), application of the forced-directed algorithm Kamada-

Kawai to the circular layout results in nodes that have a similar pattern of gene

expression to be pulled together, and those that are not similar to be pushed apart.

The resulting layout suggests that there exist distinct clusters of subjects and

genes. As shown in Fig. 14.7, the subjects had a complex but understandable

topology consisting of a majority of the cases (triangles and diamonds) on the top

cluster which had a preferential expression of the top 14 genes, and a majority of the

Fig. 14.6 The same network as in Fig. 14.5 but where edge thickness is proportional to the

normalized gene expression value and the size of each node is proportional to the total expression

values of the connecting edges. Thick edges represent higher gene expression values compared to

thin edges. Similarly, larger subject nodes have higher aggregate gene expression values compared

to smaller patient nodes
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controls (squares) at the bottom of the network which had preferential expression of

the bottom 4 genes. In addition, the cases on the top had a core-periphery topology,

where there were some cases with high overall gene expression in the center, and

many patients with low overall gene expression in the periphery. Finally, there were

four cases (triangles and diamonds) that were clustered with the controls at the

bottom of the network.

While the network layout suggests the existence of distinct clusters, it is not

designed to reveal the members of each cluster. We therefore need to use quanti-

tative methods that are explicitly designed to identify the boundaries of clusters

based on a multivariate analysis of the data.

PTGDR

FLJ13197
FCER1A

KLRB1

IFI27 LDLR

TRIB1

HIST2H2AA
HIST2H2AA

HIST1H1C

H1F0 FCGR1A

RNASE2

SIGLEC1

GMPR

MMP8

FCGR1ADEFA1

Controls
Influenza Patients
RSV Patients

Fig. 14.7 Application of Kamada-Kawai, a force-directed algorithm, to the circular layout. The

algorithm pulls nodes with similar gene expression patterns closer together while pushing apart

those with dissimilar expression patterns. The layout of the network suggested the existence of

distinct subject and gene clusters, and revealed inter-cluster relationships such as how the subject

clusters express particular gene clusters. However, quantitative methods must be used to identify

cluster boundaries
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14.4.2 Quantitative Verification and Validation

There exist a wide range of quantitative methods to verify and validate patterns

discovered through network visualization methods. While in principle any statisti-

cal method can be used to quantitatively analyze a pattern observed in a network,

many patterns are often analyzed using graph-based methods (Newman 2010) that

specialize in analyzing complex relationships. For example, degree assortativity
measures whether one type of nodes in a network which have high weighted degree

(e.g., subjects that have large nodes in Fig. 14.7), are preferentially connected to

another type of nodes that have high degree (e.g., genes that have large nodes in

Fig. 14.7), or vice versa.

Another approach that can be used to verify patterns in a network is hierarchical

clustering (Johnson and Wichern 1998). This unsupervised learning method

attempts to identify the number and boundary of clusters in the data. For example,

hierarchical clustering can be used to identify clusters of patients based on their

relationship to genes, or clusters of genes based on their relationship to patients.

The method begins by putting each node in a separate cluster, and then progres-

sively joins nodes that are most similar based on their relationship to connected

nodes. This progressive grouping generates a tree structure called a dendrogram,
where distances between subsequent layers of the tree represent the strength of

Fig. 14.8 A heatmap with dendrogram generated through hierarchical clustering helped to

identify the boundaries of three subject clusters, which were superimposed onto the network

shown in Fig. 14.4 using colored nodes to denote cluster membership. The network also shows the

relationship of the subject clusters to the top gene cluster consisting of 11 genes, and bottom gene

cluster consisting of 4 genes (Bhavnani et al. 2014a)
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dissimilarity between the respective clusters; the larger the distance between two

subsequent layers, the stronger the clustering. Analysts therefore determine the

number and membership of the clusters by identifying relatively large breaks

between the layers in the dendrogram.

Given the wide range of quantitative methods available, the patterns in the

network are used to guide the selection of the appropriate method. For example,

if distinct clusters do not exist in a network, then it is not appropriate to apply a

clustering algorithm to the network. This approach of selecting methods based on

the inspection of the data is similar to how statisticians determine whether to use

parametric or non-parametric inferential methods based on the underlying distri-

bution of the data.

Because the network in Fig. 14.7 suggested the existence of distinct clusters,

hierarchical clustering was used to identify the boundary and members of the

clusters. As shown in Fig. 14.8b, the horizontal dendrogram represents the gene

clusters, the vertical dendrogram represents the patient clusters, and the colored

cells represent normalized gene expression ranging from green (0) to red (1). The

dendrograms shows a clear break at two clusters for the genes, and three clusters for

subjects (as shown by the corresponding blue dotted lines across each dendrogram).

While there may be clear breaks in the dendrograms, the overall pattern could

have occurred by random chance. Patterns discovered in networks, and subse-

quently the dendrograms, are therefore, validated by determining their significance.

One approach to do this is to compare the patterns in the data to random permuta-

tions of the network.

To test whether there were significant breaks in the dendrogram (denoting the

existence of distinct clusters), the variance, skewness, and kurtosis of the dissim-

ilarities (generated by the hierarchical clustering algorithm) in the flu/RSV network

were compared to 1,000 random permutations of the data. For each network

permutation, the number of nodes and the number of edges connected to each

node, in addition to the edge weight distribution of subjects were preserved when

analyzing the gene dendrogram, and vice versa. Significant breaks in the subject or

gene dendrograms would result in a significantly larger variance, skewness, and

kurtosis of the dissimilarity measures, compared to the same measures generated

from the random networks. As previously reported (Bhavnani et al. 2014a, b) the

results showed the clusteredness of the subjects in the network was significant as

measured by the variance of the dissimilarities (flu/RSV¼ 2.75, Random-

Mean¼ 0.88, p< .001 two-tailed test), skewness of the distribution of dissimilar-

ities (flu/RSV¼ 5.55, Random-Mean¼ 3.94, p< .001 two-tailed test), and kurtosis

of the distribution of dissimilarities (flu/RSV¼ 38.69, Random-Mean¼ 25.03,

p< .001 two-tailed test).

The same approach was used to test the clusteredness of the gene clusters. The

results showed that the gene clustering was also significant when compared to 1,000

random networks based on variance of the dissimilarities (flu/RSV¼ 2.91, Ran-

dom-Mean¼ 0.24, p< .001 two-tailed test), skewness of the distribution of dissim-

ilarities (flu/RSV¼ 2.01, Random-Mean¼ 0.80, p< .001 two-tailed test), and
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kurtosis of the distribution of dissimilarities (flu/RSV¼ 7.81, Random-

Mean¼ 3.16, p< .001 two-tailed test).

To understand why the subjects and genes were clustered, and how they related

to each other, the cluster memberships were superimposed onto the network. As

shown in Fig. 14.8a, the subject nodes were colored (blue, yellow, and pink) to

denote their membership in three separate clusters referred to as core cases,

periphery cases, and control-like cases. Furthermore, the 14 genes on the top, and

the 4 genes at the bottom also formed distinct clusters, but because they were easy

to distinguish by their spatial separation, they were kept black to reduce visual

complexity.

As shown in Fig. 14.7, in addition to the above clustering, the core cases

appeared to have higher overall gene expression (based on their size which is

proportional to the sum of their edge weights) compared to the periphery cases.

This pattern was quantitatively verified by comparing the weighted degree central-

ity (sum of edge weights) of the core cases to those of the periphery cases. This can

be done with well-known statistical tests such as the Mann Whitney U test, a

non-parametric test, which can be used to determine if the median of a variable is

significantly different across two groups.

The results showed that the core cases (Median¼ 4.55) was significantly differ-

ent (U¼ 49.00, p< .001, two-tailed test) compared to the periphery cases

(Median¼ 2.52) verifying that the overall gene expression of the patients in the

core was higher compared to those in the periphery. Furthermore, the median gene

expression of the 14 genes across the 25 core cases (Median¼ 4.22) was signifi-

cantly higher (U¼ 16, p< .001, two-tailed test) compared to the 50 periphery cases

(Median¼ 1.95). This pattern can also be seen in the high expression values (shown

in mostly red cells) in the upper left-hand corner of the heatmap in Fig. 14.8b.

Finally, there was no significant difference (χ2(2, N¼ 79)¼ 0.86, p¼ 0.652) in the

proportion of flu vs. RSV patients across the three case clusters, suggesting that the

gene-based clustering was common across both types of infection.

The above results of the cluster analysis superimposed over the network, in

addition to quantitative analysis of gene expression across the clusters enabled the

identification of three potential sub-phenotypes: (1) core-cases who had a signifi-

cantly higher gene expression of the top cluster of 14 genes, (2) periphery cases

who had a medium expression of the top 14 genes, and (3) control-like caseswhose

profiles were similar to the controls with high expression of the bottom cluster

4 genes. These three sub-phenotypes were common across both infections.

14.4.3 Inference of Sub-phenotypes and Biological
Mechanisms

While the visual and quantitative analysis helped to reveal patterns in the data, the

ultimate goal of the network analysis is to infer the biological mechanisms
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involved, and the emergent sub-phenotypes in the data. This inferential step

requires an integrated understanding of the molecular and clinical variables.

One approach to conduct such an integrated analysis, is to analyze how the

patients in each emergent cluster (based on molecular profiles), differ in their

clinical variables. As the primary data included disease severity of each patient

(Ioannidis et al. 2012), we used the Mann Whitney U test to analyze if the core and

periphery cases were significantly different in their disease severity. The test

revealed that the disease severity of core cases (Median¼ 7) was significantly

higher (U¼ 261.50, p< .001, two-tailed test) compared to periphery cases

(Median¼ 2). This result suggested a significant association between the high

gene expression of the 14 top genes in the core-cases, and higher disease severity.

The bipartite visualization and quantitative verifications therefore revealed not

only sub-phenotypes based on the molecular profiles, but also how they related to

clinical variables, which enabled the domain experts to infer three possible

sub-phenotypes and their potential pathways (Bhavnani et al. 2014a, b).

1. The core cases have significantly higher expression of 14 up-regulated genes,

which included 4 histone genes, 4 genes with to date have unknown function in

antiviral response, and 6 immune-related genes each of which has a well-known

non-overlapping antiviral function. An Ingenuity Pathway Analysis (Ingenuity

2014) of the 14 genes suggested an indirect but strong interferon signature

including TNFα and IL-6 cytokines involved in antiviral and innate inflamma-

tory responses. Because the core cases also had a significantly higher disease

severity score, they represent a distinct at-risk sub-phenotype that are hyper

responsive to pathways targeted to viral clearance, and possibly carry a risk for

long-term epithelial cell damage.

2. The periphery cases have a medium expression of all 18 genes and therefore

suggest a second subphenotype with a subdued anti-viral response relative to the

above hyperresponders.

3. The control-like cases have a high expression of 4 down-regulated genes, and

low expression of the 14 up-regulated genes, and therefore mirror the expression

patterns in uninfected controls. The results therefore suggest that the down-

regulation of these 4 genes indicates a “protective” phenotype making them

similar to the uninfected controls. Existing literature on these genes provide

some confirmatory evidence. While the exact role of the high-affinity receptor

which binds to the constant portion of IgE (FcER1) is unknown in viral patho-

genesis, SNPs included on this gene have been shown to be associated with

severe RSV disease (Janssen et al. 2007). Additionally, KLRB1, which has been

shown to have inhibitory functions on natural killer (NK) cells (Pozo et al. 2006)

was downregulated, suggesting an enhanced antiviral response in patients

resembling the immune response of controls. Finally, PTGDR a receptor impor-

tant in mast cell function was downregulated, but the exact role of this receptor

in viral infection is still unknown. Overall, control-like cases suggests a third

subphenotype which have a “just enough” response to the virus, without overt
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stimulation of virally induced genes, and therefore potentially with reduced

bystander damage.

One might argue that the above result could also be the result of the progression

of infection over time. For example, the core cases could be at the peak of infection,

the periphery cases could be later in the infection, and the control-like cases could

be recovering from the infection. However, an additional analysis revealed that the

3 case clusters were not significantly different (H(2, N¼ 79)¼ 2.56, p¼ 0.278) in

time of sample collection after hospitalization. There is of course the possibility that

the children were infected at very different times before hospitalization, but con-

trolling such a variable is practically impossible in the analysis of naturally infected

humans. Therefore, we provide two explanations for why sample collection time is

probably not an adequate explanation for the results: (1) Because all case samples

were collected from patients that were hospitalized indicating severe illness, a

resolution of such severity in the short time window of 42–72 h is unlikely to

occur. (2) The gene expression changes in the PBMCs of the patients suggest a

specific induced innate immune response (e.g., Toll-like receptor) to viruses. Such

signaling pathways (which induce interferon secretion and contribute to anti-viral

immunity) last several days which exceeds the sample collection time window in

this study. We therefore propose that the three case clusters are more likely the

result of inherent host differences in anti-viral responses, and therefore represent

distinct sub-phenotypes.

Informed by these underlying molecular processes, the network analysis of

subjects and genes therefore helped to infer not only the sub-phenotypes, but also

the possible mechanisms involved, and which sub-phenotypes had a high risk of

developing severe complications. The results therefore provided data-driven

hypotheses of sub-phenotypes and their mechanisms which can be validated in

future research with other datasets. Such analysis therefore could lead to future

treatments that are targeted to specific sub-phenotypes, and is therefore an impor-

tant step towards precision medicine.

14.5 Strengths and Limitations of Network Analysis

Network analysis has several strengths and limitations, whose understanding can

lead to informed uses of the method, appropriate interpretation of the results, and

insights for future enhancements and complementary methods.

14.5.1 Strengths

Network visualization and analysis provide four distinct strengths for enabling

rapid discovery of patterns in complex biomedical data.
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1. Provides Integrative Visualizations. Because networks are based on graph

theory, they provide a tight integration between visual and quantitative analysis.

For example as shown in the Fig. 14.8a, networks enable the integrative visual-

ization of multiple raw values (e.g., subject-gene associations, gene expression

values, subject phenotype), aggregated values (e.g., sum of gene values), and

emergent global patterns (e.g., clusters) in a single representation. This uniform

visual representation leverages the parallel processing power of the visual cortex

enabling the comprehension of complex multivariate, quantitative relationships.

2. Guides Quantitative Analysis. Networks do not require a priori assumptions

about the relationship of nodes within the data, in contrast to hierarchical

clustering or k-means which assume the data is hierarchically organized or

contain disjoint clusters, respectively. Instead, by using a simple pairwise

representation of nodes and edges, network layouts enable the identification of

multiple structures (e.g., hierarchical, disjoint, overlapping, nested) in a single

representation (Nooy et al. 2005). Therefore, while layout algorithms such as

Kamada-Kawai depend on the force-directed assumption and its implementa-

tion, such algorithms are viewed as less biased for data exploration because they

do not impose a particular cluster structure on the data, often leading to the

identification of more complex structures in the data (Bhavnani et al. 2010). The

overall approach therefore enables a more informed selection of quantitative

methods to verify the patterns in the data.

3. Enables Pathway Inference through Co-occurrence. Network layouts such as

the one shown in Fig. 14.8a, preserve highly-correlated variables (such as genes)

and display them through clustering. Furthermore, the bipartite network repre-

sentation enables the comprehension of inter-cluster relationships such as

between variable (e.g., genes) clusters and subject clusters. These features

provide important clues to domain experts about the pathways that involve

those variables. This is in contrast to many supervised learning methods which

drop highly correlated variables in an attempt to identify a small number of

variables that together can explain the maximum amount of variance in the data.

While this approach is powerful for developing predictive models, the reduction

in variables could limit the inference of biological pathways involved in the

disease.

4. Accelerates Discovery through Interactivity. Networks enable high interac-

tivity enabling the rapid modification of the visual representation to match the

changing task and representation needs of analysts during the analysis process.

For example, nodes that represent patients in a network can be interactively

colored or reshaped to represent different variables such as gender and race,

enabling the discovery of how they relate to the rest of the network.
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14.5.2 Limitations

Networks have three important limitations that are important to understand for their

current use, and need to be addressed in future research.

1. Constrains Number of Node Properties.While node shape, color and size can

represent different variables, there is a limit on the number of variables that can

be simultaneously represented. Furthermore, a visual representation can get

overloaded with too many colors and shapes, which can mask rather than reveal

important patterns in the data. Therefore, while networks can reveal complex

multivariate patterns in the data based on a few variables, they often require

complimentary visual analytical representations such as Circos ideograms

(Krzywinski et al. 2009; Bhavnani et al. 2011a) to explore data that is high-

dimensional (e.g., large number of attributes related to entities such as subjects

in the network).

2. Requires Advanced Computational Skills. While networks provide a rich

vocabulary of graphical elements to represent data, their design and use requires

iterative refinement based on an understanding of the domain, knowledge of

graphic design and cognitive heuristics, and the use of complex interfaces that

are designed for those facile in computation. This combination of knowledge

required to conduct network analyses makes domain experts dependent on

network analysts to generate and refine the representations, which can limit

the rapid exploration and interpretation of complex data.

3. Lacks Systematic Approaches for Finding Structure in Hairballs. While

network layout algorithms are designed to reveal complex and unbiased patterns

in multivariate data, they often fail to show any patterns in the data resulting in

what is colloquially called a “hairball”. In such cases, the nodes appear to be

randomly laid out providing little guidance for how to proceed with the analysis.

While network applications offer many interactive methods to filter data such as

by dropping edges and nodes based on different thresholds, many of these

methods are arbitrary and therefore unjustifiable to use when searching for

patterns especially in important domains such as biomedicine. There is therefore

a need to develop more systematic and defensible methods to find hidden

patterns in network hairballs.

14.6 Future Directions in Network Analysis
of Biomedical Data

The limitations of networks discussed above motivate future research with the goal

of overcoming theoretical, practical, and pedagogical hurdles. Theoretically, we
need better frameworks that tightly integrate existing theories from cognition,

mathematics, and graphic design. Such theories can help predict for example
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which combination of visual representations can together help researchers to best

comprehend patterns in different types of data such as genes versus cytokines.

Furthermore, given that many network layouts show no structure, future algorithms

should attempt to integrate different methods from machine learning to enable the

discovery of hidden patterns. These research directions could enable the rapid

discovery of patterns in the age of big data and translational medicine. Practically,

visual analytical tools tend to be designed for analysts, often requiring substantial

programming to make a dataset ready for visualization, and therefore limiting the

use of the methods to only a few biologists and physicians. This hurdle motivates

the need for tools that enable biologists and physicians to explore data on their own

so that they can better leverage their domain knowledge in interpreting the patterns

in the data. Of course such patterns need to be statistically validated by subsequent

analyses, but currently the exploration and validation is done mostly by analysts,

who could miss important associations due to the lack of domain knowledge.

Pedagogically there needs to be a concerted effort to train the next generation of

biomedical informaticians for developing and using novel visual analytical

approaches, and to train biologists and physicians on how to make important

biomedical discoveries in visual analytical representations of their data. Such

advances should enable visual analytics to fully realize its potential to accelerate

discoveries in increasingly complex and big biomedical data.

Discussion Questions

1. Why are visualizations and interactivity critical in making discoveries in com-

plex biomedical data?

2. What are the strengths and limitations of networks, and how can future research

fully exploit the strengths, and overcome the limitations?
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