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Abstract

Generalized Binary Search (GBS) is a well known greedy algorithm for identify-
ing an unknown object while minimizing the number of “yes” or “no” questions
posed about that object, and arises in problems such as active learning and active
diagnosis. Here, we provide a coding-theoretic interpretation for GBS and show
that GBS can be viewed as a top-down algorithm that greedily minimizes the ex-
pected number of queries required to identify an object. This interpretation is then
used to extend GBS in two ways. First, we consider the case where the objects are
partitioned into groups, and the objective is to identify only the group to which
the object belongs. Then, we consider the case where the cost of identifying an
object grows exponentially in the number of queries. In each case, we present an
exact formula for the objective function involving Shannon or Rényi entropy, and
develop a greedy algorithm for minimizing it.

1 Introduction

In applications such as active learning [1, 2, 3, 4], disease/fault diagnosis [5, 6, 7], toxic chemical
identification [8], computer vision [9, 10] or the adaptive traveling salesman problem [11], one often
encounters the problem of identifying an unknown object while minimizing the number of binary
questions posed about that object. In these problems, there is a set Θ = {θ1, · · · , θM} ofM different
objects and a set Q = {q1, · · · , qN} of N distinct subsets of Θ known as queries. An unknown
object θ is generated from this set Θ with a certain prior probability distribution Π = (π1, · · · , πM ),
i.e., πi = Pr(θ = θi), and the goal is to uniquely identify this unknown object through as few queries
from Q as possible, where a query q ∈ Q returns a value 1 if θ ∈ q, and 0 otherwise. For example,
in active learning, the objects are classifiers and the queries are the labels for fixed test points. In
active diagnosis, objects may correspond to faults, and queries to alarms. This problem has been
generically referred to as binary testing or object/entity identification in the literature [5, 12]. We
will refer to this problem as object identification. Our attention is restricted to the case where Θ and
Q are finite, and the queries are noiseless.

The goal in object identification is to construct an optimal binary decision tree, where each internal
node in the tree is associated with a query from Q, and each leaf node corresponds to an object
from Θ. Optimality is often with respect to the expected depth of the leaf node corresponding to
the unknown object θ. In general the determination of an optimal tree is NP-complete [13]. Hence,
various greedy algorithms [5, 14] have been proposed to obtain a suboptimal binary decision tree. A
well studied algorithm for this problem is known as the splitting algorithm [5] or generalized binary
search (GBS) [1, 2]. This is the greedy algorithm which selects a query that most evenly divides the
probability mass of the remaining objects [1, 2, 5, 15].
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GBS assumes that the end goal is to rapidly identify individual objects. However, in applications
such as disease diagnosis, where Θ is a collection of possible diseases, it may only be necessary
to identify the intervention or response to an object, rather than the object itself. In these prob-
lems, the object set Θ is partitioned into groups and it is only necessary to identify the group to
which the unknown object belongs. We note below that GBS is not necessarily efficient for group
identification.

To address this problem, we first present a new interpretation of GBS from a coding-theoretic per-
spective by viewing the problem of object identification as constrained source coding. Specifically,
we present an exact formula for the expected number of queries required to identify an unknown
object in terms of Shannon entropy of the prior distribution Π, and show that GBS is a top-down
algorithm that greedily minimizes this cost function. Then, we extend this framework to the problem
of group identification and derive a natural extension of GBS for this problem.

We also extend the coding theoretic framework to the problem of object (or group) identification
where the cost of identifying an object grows exponentially in the number of queries, i.e., the cost
of identifying an object using d queries is λd for some fixed λ > 1. Applications where such
a scenario arises have been discussed earlier in the context of source coding [16], random search
trees [17] and design of alphabetic codes [18], for which efficient optimal or greedy algorithms
have been presented. In the context of object/group identification, the exponential cost function has
certain advantages in terms of avoiding deep trees (which is crucial in time-critical applications)
and being more robust to misspecification of the prior probabilities. However, there does not exist
an algorithm to the best of our knowledge that constructs a good suboptimal decision tree for the
problem of object/group identification with exponential costs. Once again, we show below that GBS
is not necessarily efficient for minimizing the exponential cost function, and propose an improved
greedy algorithm that generalizes GBS.

1.1 Notation

We denote an object identification problem by a pair (B,Π) where B is a known M × N binary
matrix with bij equal to 1 if θi ∈ qj , and 0 otherwise. A decision tree T constructed on (B,Π) has a
query from the setQ at each of its internal nodes, with the leaf nodes terminating in the objects from
Θ. For a decision tree with L leaves, the leaf nodes are indexed by the set L = {1, · · · , L} and the
internal nodes are indexed by the set I = {L+1, · · · , 2L−1}. At any node ‘a’, let Qa ⊆ Q denote
the set of queries that have been performed along the path from the root node up to that node. An
object θi reaches node ‘a’ if it agrees with the true θ on all queries in Qa, i.e., the binary values in B
for the rows corresponding to θi and θ are same over the columns corresponding to queries in Qa.
At any internal node a ∈ I, let l(a), r(a) denote the “left” and “right” child nodes, and let Θa ⊆ Θ
denote the set of objects that reach node ‘a’. Thus, the sets Θl(a) ⊆ Θa,Θr(a) ⊆ Θa correspond
to the objects in Θa that respond 0 and 1 to the query at node ‘a’, respectively. We denote by
πΘa :=

∑
{i:θi∈Θa} πi, the probability mass of the objects reaching node ‘a’ in the tree. Finally, we

denote the Shannon entropy of a proportion π ∈ [0, 1] by H(π) := −π log2 π− (1−π) log2(1−π)
and that of a vector Π = (π1, · · · , πM ) by H(Π) := −

∑
i πi log2 πi, where we use the limit,

lim
π→0

π log2 π = 0, to define the value of 0 log2 0.

2 GBS Greedily Minimizes the Expected Number of Queries

We begin by noting that object identification reduces to the standard source coding problem [19]
in the special case when Q is complete, meaning, for any S ⊆ Θ there exists a query q ∈ Q such
that either q = S or Θ \ q = S. Here, the problem of constructing an optimal binary decision tree
is equivalent to constructing optimal variable length binary prefix codes, for which there exists an
efficient optimal algorithm known as the Huffman algorithm [20]. It is also known that the expected
length of any binary prefix code (i.e., expected depth of any binary decision tree) is bounded below
by the Shannon entropy of the prior distribution Π [19].

For the problem of object identification, where Q is not complete, the entropy lower bound is still
valid, but Huffman coding cannot be implemented. In this case, GBS is a greedy, top-down al-
gorithm that is analogous to Shannon-Fano coding [21, 22]. We now show that GBS is actually
greedily minimizing the expected number of queries required to identify an object.
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First, we define a parameter called the reduction factor on the binary matrix/tree combination that
provides a useful quantification on the expected number of queries required to identify an object.
Definition 1 (Reduction factor). Let T be a decision tree constructed on the pair (B,Π). The
reduction factor at any internal node ‘a’ in the tree is defined by ρa = max{πΘl(a) , πΘr(a)}/πΘa .

Note that 0.5 ≤ ρa ≤ 1. Given an object identification problem (B,Π), let T (B,Π) denote the set
of decision trees that can uniquely identify all the objects in the set Θ. We assume that the rows of
B are distinct so that T (B,Π) 6= ∅. For any decision tree T ∈ T (B,Π), let {ρa}a∈I denote the
set of reduction factors and let di denote the number of queries required to identify object θi in the
tree. Then the expected number of queries required to identify an unknown object using a tree (or,
the expected depth of a tree) is L1(Π) =

∑
i πidi. Note that the cost function depends on both Π

and d = (d1, · · · , dM ). However, we do not show the dependence on d explicitly.
Theorem 1. For any T ∈ T (B,Π), the expected number of queries required to identify an unknown
object is given by

L1(Π) = H(Π) +
∑
a∈I

πΘa [1−H(ρa)]. (1)

Theorems 1, 2 and 3 are special cases of Theorem 4, whose proof is sketched in the Appendix.
Complete proofs are given in the Supplemental Material. Since H(ρa) ≤ 1, this theorem recovers
the result that L1(Π) is bounded below by the Shannon entropy H(Π). It presents the exact formula
for the gap in this lower bound. It also follows from the above result that a tree attains the entropy
bound iff the reduction factors are equal to 0.5 at each internal node in the tree. Using this result,
minimizing L1(Π) can be formulated as the following optimization problem:

min
T∈T (B,Π)

H(Π) +
∑
a∈I πΘa [1−H(ρa)]. (2)

Since Π is fixed, this optimization problem reduces to minimizing
∑
a∈I πΘa [1 − H(ρa)] over

T (B,Π). As mentioned earlier, finding a global optimal solution for this optimization problem is
NP-complete [13]. Instead, we may take a top down approach and minimize the objective function
by minimizing the term Ca := πΘa [1 −H(ρa)] at each internal node, starting from the root node.
Note that the only term that depends on the query chosen at node ‘a’ in this cost function is ρa.
Hence the algorithm reduces to minimizing ρa (i.e., choosing a split as balanced as possible) at each
internal node a ∈ I.

In other words, greedy minimization of (2) is equivalent to GBS. In the next section, we show how
this framework can be extended to derive greedy algorithms for the problems of group identification
and object identification with exponential costs.

3 Extensions of GBS
3.1 Group Identification

In group identification1, the goal is not to determine the unknown object θ ∈ Θ, rather the group to
which it belongs, in as few queries as possible. Here, in addition to B and Π, the group labels for
the objects are also provided, where the groups are assumed to be disjoint.

We denote a group identification problem by (B,Π,y), where y = (y1, · · · , yM ) denotes the group
labels of the objects, yi ∈ {1, · · · ,K}. Let {Θk}Kk=1 be the partition of Θ, where Θk = {θi ∈ Θ :
yi = k}. It is important to note here that the group identification problem cannot be simply reduced
to an object identification problem with groups {Θ1, · · · ,ΘK} as “meta objects,” since the objects
within a group need not respond the same to each query. For instance, consider the toy example
shown in Figure 1 where the objects θ1, θ2 and θ3 belonging to group 1 cannot be collapsed into a
single meta object as these objects respond differently to queries q1 and q3.

In this context, we also note that GBS can fail to produce a good solution for a group identification
problem as it does not take the group labels into consideration while choosing queries. Once again,
consider the toy example shown in Figure 1 where query q2 is sufficient to identify the group of an
unknown object, whereas GBS requires 2 queries to identify the group when the unknown object is
either θ2 or θ4. Here, we propose a natural extension of GBS to the problem of group identification.

1Golovin et.al. [23] simultaneously studied the problem of group identification in the context of object
identification with persistent noise. Their algorithm is an extension of that in [24].
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q1 q2 q3 Group label, y Π
θ1 0 1 1 1 0.25
θ2 1 1 0 1 0.25
θ3 0 1 0 1 0.25
θ4 1 0 0 2 0.25

Figure 1: Toy Example
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Figure 2: Decision tree constructed using GBS

Note that when constructing a tree for group identification, a greedy, top-down algorithm terminates
splitting when all the objects at the node belong to the same group. Hence, a tree constructed in this
fashion can have multiple objects ending in the same leaf node and multiple leaves ending in the
same group. For a tree with L leaves, we denote by Lk ⊂ L = {1, · · · , L} the set of leaves that
terminate in group k. Similar to Θk ⊆ Θ, we denote by Θk

a ⊆ Θa the set of objects belonging to
group k that reach node ‘a’ in a tree. Also, in addition to the reduction factor defined in Section 2,
we define a new parameter called the group reduction factor for each group k ∈ {1, · · · ,K} at each
internal node.
Definition 2 (Group reduction factor). Let T be a decision tree constructed on a group identification
problem (B,Π,y). The group reduction factor for any group k at an internal node ‘a’ is defined by
ρka = max{πΘk

l(a)
, πΘk

r(a)
}/πΘka

.

Given (B,Π,y), let T (B,Π,y) denote the set of decision trees that can uniquely identify the groups
of all objects in the set Θ. For any decision tree T ∈ T (B,Π,y), let dj denote the depth of leaf
node j ∈ L. Let random variable X denote the number of queries required to identify the group
of an unknown object θ. Then, the expected number of queries required to identify the group of an
unknown object using the given tree is equal to

L1(Π) =
K∑
k=1

Pr(θ ∈ Θk) E[X|θ ∈ Θk] =
K∑
k=1

πΘk

∑
j∈Lk

πΘj

πΘk
dj

 (3)

Theorem 2. For any T ∈ T (B,Π,y), the expected number of queries required to identify the group
of an unknown object is given by

L1(Π) = H(Πy) +
∑
a∈I

πΘa

[
1−H(ρa) +

K∑
k=1

πΘka

πΘa

H(ρka)

]
(4)

where Πy = (πΘ1 , · · · , πΘK ) denotes the probability distribution of the object groups induced by
the labels y and H(·) denotes the Shannon entropy.

Note that the term in the summation in (4) is non-negative. Hence, the above result implies that
L1(Π) is bounded below by the Shannon entropy of the probability distribution of the groups. It
also follows from this result that this lower bound is achieved iff the reduction factor ρa is equal to
0.5 and the group reduction factors {ρka}Kk=1 are equal to 1 at every internal node in the tree. Also,
note that the result in Theorem 1 is a special case of this result where each group is of size 1 leading
to ρka = 1 for all groups at every internal node.

Using this result, the problem of finding a decision tree with minimum L1(Π) can be formulated as:

min
T∈T (B,Π,y)

∑
a∈I πΘa

[
1−H(ρa) +

∑K
k=1

πΘka
πΘa

H(ρka)
]
. (5)

This optimization problem being a generalized version of that in (2) is NP-complete. Hence, we
may take a top-down approach and minimize the objective function greedily by minimizing the term
πΘa [1 − H(ρa) +

∑K
k=1

πΘka
πΘa

H(ρka)] at each internal node, starting from the root node. Note that
the terms that depend on the query chosen at node ‘a’ are ρa and ρka. Hence the algorithm reduces
to minimizing Ca := 1−H(ρa) +

∑K
k=1

πΘka
πΘa

H(ρka) at each internal node ‘a’.
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Group-GBS (GGBS)

Initialize: L = {root node}, Qroot = ∅
while some a ∈ L has more than one group

Choose query q∗ = arg minq∈Q\Qa Ca(q)
Form child nodes l(a), r(a)
Replace ‘a’ with l(a), r(a) in L

end

Ca = 1−H(ρa) +
∑K
k=1

πΘka
πΘa

H(ρka)

Figure 3: Greedy algorithm for group identifi-
cation

λ-GBS

Initialize: L = {root node}, Qroot = ∅
while some a ∈ L has more than one object

Choose query q∗ = arg minq∈Q\Qa Ca(q)
Form child nodes l(a), r(a)
Replace ‘a’ with l(a), r(a) in L

end

Ca =
πΘl(a)

πΘa
Dα(Θl(a)) +

πΘr(a)

πΘa
Dα(Θr(a))

Figure 4: Greedy algorithm for object identifi-
cation with exponential costs

Note that this objective function consists of two terms, the first term [1−H(ρa)] favors queries that
evenly distribute the probability mass of the objects at node ‘a’ to its child nodes (regardless of the
group) while the term

∑
k

πΘka
πΘa

H(ρka) favors queries that transfer an entire group of objects to one of
its child nodes. This algorithm, which we refer to as Group Generalized Binary Search (GGBS), is
summarized in Figure 3. Finally, as an interesting connection with greedy decision-tree algorithms
for multi-class classification, it can be shown that GGBS is equivalent to the decision-tree splitting
algorithm used in the C4.5 software package, based on the entropy impurity measure [25].

3.2 Exponential Costs

Now assume the cost of identifying an object is defined by Lλ(Π) := logλ(
∑
i πiλ

di), where λ > 1
and di corresponds to the depth of object θi in a tree. In the limiting case where λ tends to 1 and∞,
this cost function reduces to the average depth and worst case depth, respectively. That is,

L1(Π) = lim
λ→1

Lλ(Π) =
M∑
i=1

πidi, L∞(Π) := lim
λ→∞

Lλ(Π) = max
i∈{1,··· ,M}

di.

As mentioned in Section 2, GBS is tailored to minimize L1(Π), and hence may not produce a good
suboptimal solution for the exponential cost function with λ > 1. Thus, we derive an extension
of GBS for the problem of exponential costs. Here, we use a result by Campbell [26] which states
that the exponential cost Lλ(Π) of any tree T is bounded below by the α-Rényi entropy, given by
Hα(Π) := 1

1−α log2 (
∑
i π

α
i ), where α = 1

1+log2 λ
. We consider a general object identification

problem and derive an explicit formula for the gap in this lower bound. We then use this formula to
derive a family of greedy algorithms that minimize the exponential cost function Lλ(Π) for λ > 1.
Note that the entropy bound reduces to the Shannon entropyH(Π) and log2M , in the limiting cases
where λ tends to 1 and∞, respectively.
Theorem 3. For any λ > 1 and any T ∈ T (B,Π), the exponential cost Lλ(Π) is given by

λLλ(Π) = λHα(Π) +
∑
a∈I

πΘa

[
(λ− 1)λda −Dα(Θa) +

πΘl(a)

πΘa

Dα(Θl(a)) +
πΘr(a)

πΘa

Dα(Θr(a))
]

where da denotes the depth of any internal node ‘a’ in the tree, Θa denotes the set of objects that

reach node ‘a’, πΘa =
∑

{i:θi∈Θa}
πi, α = 1

1+log2 λ
and Dα(Θa) :=

[∑
{i:θi∈Θa}

(
πi
πΘa

)α]1/α
.

The term in summation over internal nodes I in the above result corresponds to the gap in the
Campbell’s lower bound. This result suggests a top-down greedy approach to minimize Lλ(Π),
which is to minimize the term (λ − 1)λda − Dα(Θa) +

πΘl(a)

πΘa
Dα(Θl(a)) +

πΘr(a)

πΘa
Dα(Θr(a)) at

each internal node, starting from the root node. Noting that the terms that depend on the query
chosen at node ‘a’ are πΘl(a) , πΘr(a) , Dα(Θl(a)) and Dα(Θr(a)), this reduces to minimizing Ca :=
πΘl(a)

πΘa
Dα(Θl(a)) +

πΘr(a)

πΘa
Dα(Θr(a)) at each internal node. This algorithm, which we refer to as

λ-GBS, can be summarized as shown in Figure 4. Also, it can be shown by the application of
L’Hôpital’s rule that in the limiting case where λ → 1, λ-GBS reduces to GBS, and in the case
where λ→∞, λ-GBS reduces to GBS with uniform prior πi = 1/M . The latter algorithm is GBS
but with the true prior Π replaced by a uniform distribution.
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Figure 6: Expected number of queries required to identify
the group of an object using GBS and GGBS

3.3 Group Identification with Exponential Costs

Finally, we complete our discussion by considering the problem of group identification with expo-
nential costs. Here, the cost of identifying the group of an object given a tree T ∈ T (B,Π,y), is
defined to be Lλ(Π) = logλ

(∑
j∈L πΘjλ

dj
)

, which reduces to (3) in the limiting case as λ → 1,
and to maxj∈L dj , i.e., the worst case depth of the tree, in the case where λ→∞.
Theorem 4. For any λ > 1 and any T ∈ T (B,Π,y), the exponential cost Lλ(Π) of identifying the
group of an object is given by

λLλ(Π) = λHα(Πy) +
∑
a∈I

πΘa

[
(λ− 1)λda −Dα(Θa) +

πΘl(a)

πΘa

Dα(Θl(a)) +
πΘr(a)

πΘa

Dα(Θr(a))
]

where Πy = (πΘ1 , · · · , πΘK ) denotes the probability distribution of the object groups induced by

the labels y, Dα(Θa) :=
[∑K

k=1

(πΘka
πΘa

)α]1/α
with α = 1

1+log2 λ
.

Note that the definition of Dα(Θa) in this theorem is a generalization of that in Theorem 3. As
mentioned earlier, Theorems 1-3 are special cases of the above theorem, where Theorem 2 follows
as λ → 1 and Theorem 1 follows when each group is of size one in addition. This result also
implies a top-down, greedy algorithm to minimize Lλ(Π), which is to choose a query that minimizes
Ca :=

πΘl(a)

πΘa
Dα(Θl(a)) +

πΘr(a)

πΘa
Dα(Θr(a)) at each internal node. Once again, it can be shown by

the application of L’Hôpital’s rule that in the limiting case where λ→ 1, this reduces to GGBS, and
in the case where λ→∞, this reduces to choosing a query that minimizes the maximum number of
groups in the child nodes [27].

4 Performance of the Greedy Algorithms
We compare the performance of the proposed algorithms to that of GBS on synthetic data generated
using different random data models.

4.1 Group Identification

For fixed M = |Θ| and N = |Q|, we consider a random data model where each query q ∈ Q is
associated with a pair of parameters (γw(q), γb(q)) ∈ [0.5, 1]2. Here, γw(q) reflects the correlation
of the object responses within a group, and γb(q) captures the correlation of object responses between
groups. When γw(q) is close to 0.5, each object within a group is equally likely to exhibit 0 or 1
as its response to query q, whereas, when it is close to 1, most of the objects within a group are
highly likely to exhibit the same query response. Similarly, when γb(q) is close to 0.5, each group
is equally likely to exhibit 0 or 1 as its response to the query, where a group response corresponds
to the majority vote of the object responses within a group, while, as γb(q) tends to 1, most of the
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Figure 7: Exponential cost incurred in identifying an object using GBS and λ-GBS

groups are highly likely to exhibit the same response. Given these correlation values (γw(q), γb(q))
for a query q, the object responses to query q (i.e., the binary column of 0’s and 1’s corresponding
to query q in B) are generated as follows

1. Flip a fair coin to generate a Bernoulli random variable, x
2. For each group k ∈ {1, · · · ,K}, assign a binary label bk, where bk = x with probability γb(q)
3. For each object in group k, assign bk as the object response to q with probability γw(q)

Given the correlation parameters (γw(q), γb(q)), ∀q ∈ Q, a random dataset can be created by fol-
lowing the above procedure for each query.

We compare the performances of GBS and GGBS on random datasets generated using the above
model. We demonstrate the results on datasets of size N = 200 (# of queries) and M = 400
(# of objects), where we randomly partitioned the objects into 15 groups and assumed a uniform
prior on the objects. For each dataset, the correlation parameters are drawn from independent beta
distributions over the range [0.5, 1], i.e., γw(q) ∼ Beta(1, βw) and γb(q) ∼ Beta(1, βb) where
βw, βb ∈ {0.5, 0.75, 0.95, 1, 2, 4, 8}. Figure 5 shows the density function (pdf) of Beta(1, β) for
different values of β. Note that β = 1 corresponds to a uniform distribution, while, for β < 1 the
distribution is right skewed and for β > 1 the distribution is left skewed.

Figure 6 compares the mean value of the cost functionL1(Π) for GBS and GGBS over 100 randomly
generated datasets, for each value of (βw, βb). This shows the improved performance of GGBS over
GBS in group identification. Especially, note that GGBS achieves performance close to the entropy
bound as βw decreases. This is due to the increased number of queries with γw(q) close to 1 in the
dataset. As the correlation parameter γw(q) tends to 1, choosing that query keeps the groups intact,
i.e., the group reduction factors ρka tend to 1 for these queries. Such queries offer significant gains
in group identification, but can be overlooked by GBS.

4.2 Object Identification with Exponential Costs

We consider the same random data model as above where we set K = M , i.e., each group is
comprised of one object. Thus, the only correlation parameter that determines the structure of the
dataset is γb(q), q ∈ Q. Figure 7 demonstrates the improved performance of λ-GBS over standard
GBS, and GBS with uniform prior, over a range of λ values, for a dataset generated using the above
random data model with γb(q) ∼ Beta(1, 1) = unif[0.5, 1]. Each curve in the figure corresponds
to the average value of the cost function Lλ(Π) as a function of λ over 100 repetitions. In each
repetition, the prior is generated according to Zipf’s law, i.e., (j−δ/

∑M
i=1 i

−δ)Mj=1, δ ≥ 0, after
randomly permuting the objects. Note that in the special case when δ = 0, this reduces to the
uniform distribution and as δ increases, it tends to a skewed distribution with most of the probability
mass concentrated on few objects.

Similar experiments have been performed on datasets generated using γb(q) ∼ Beta(α, β) for differ-
ent values of α, β. In all our experiments, we observed λ-GBS to be consistently performing better
than both the standard GBS, and GBS with uniform prior. In addition, the performance of λ-GBS
has been observed to be very close to that of the entropy bound. Finally, Figure 7 also reflects that
λ-GBS converges to GBS as λ→ 1, and to GBS with uniform prior as λ→∞.
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5 Conclusions
In this paper, we show that generalized binary search (GBS) is a top-down algorithm that greedily
minimizes the expected number of queries required to identify an object. We then use this inter-
pretation to extend GBS in two ways. First, we consider the case where the objects are partitioned
into groups, and the goal is to identify only the group of the unknown object. Second, we consider
the problem where the cost of identifying an object grows exponentially in the number of queries.
The algorithms are derived in a common framework. In particular, we prove the exact formulas for
the cost function in each case that close the gap between previously known lower bounds related to
Shannon and Rényi entropy. These exact formulas are then optimized in a greedy, top-down manner
to construct a decision tree. We demonstrate the improved performance of the proposed algorithms
over GBS through simulations. An important open question and the direction of our future work is
to relate these greedy algorithms to the global optimizer of their respective cost functions.
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6 Appendix: Proof Sketch for Theorem 4

Define two new functions L̃λ and H̃α as

L̃λ :=
1

λ− 1

∑
j∈L

πΘjλ
dj − 1

 =
∑
j∈L

πΘj

dj−1∑
h=0

λh

 and H̃α := 1− 1(∑K
k=1 π

α
Θk

) 1
α

,

where L̃λ is related to the cost function Lλ(Π) as λLλ(Π) = (λ− 1)L̃λ + 1, and H̃α is related to the
α-Rényi entropy Hα(Πy) as

Hα(Πy) =
1

1− α
log2

K∑
k=1

παΘk =
1

α log2 λ
log2

K∑
k=1

παΘk = logλ

(
K∑
k=1

παΘk

) 1
α

(6a)

=⇒ λHα(Πy) =

(
K∑
k=1

παΘk

) 1
α

=

(
K∑
k=1

παΘk

) 1
α

H̃α + 1 (6b)

where we use the definition of α, i.e., α = 1
1+log2 λ

in (6a). Now, we note from Lemma 1 that

L̃λ =
∑
a∈I

λdaπΘa =⇒ λLλ(Π) = 1 +
∑
a∈I

(λ− 1)λdaπΘa (7)

where da denotes the depth of internal node ‘a’ in the tree T . Similarly, we note from (6b) and
Lemma 2 that

λHα(Πy) = 1 +
∑
a∈I

[
πΘaDα(Θa)− πΘl(a)Dα(Θl(a))− πΘr(a)Dα(Θr(a))

]
. (8)

Finally, the result follows from (7) and (8) above.

Lemma 1. The function L̃λ can be decomposed over the internal nodes in a tree T , as L̃λ =∑
a∈I λ

daπΘa , where da denotes the depth of internal node a ∈ I and πΘa is the probability mass
of the objects at that node.

Lemma 2. The function H̃α can be decomposed over the internal nodes in a tree T , as

H̃α =
1(∑K

k=1 π
α
Θk

) 1
α

∑
a∈I

[
πΘaDα(Θa)− πΘl(a)Dα(Θl(a))− πΘr(a)Dα(Θr(a))

]

where Dα(Θa) :=
[∑K

k=1

(πΘka
πΘa

)α] 1
α

and πΘa denotes the probability mass of the objects at any
internal node a ∈ I.

The above two lemmas can be proved using induction over subtrees rooted at any internal node ‘a’
in the tree. The details may be found in the Supplemental Material.
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7 Supplementary Material: Complete Proof of Theorem 4

Define two new functions L̃λ and H̃α as

L̃λ :=
1

λ− 1

[∑
j∈L

πΘjλ
dj − 1

]
=
∑
j∈L

πΘj

dj−1∑
h=0

λh


H̃α := 1− 1(∑K

k=1 π
α
Θk

) 1
α

,

where L̃λ is related to the cost function Lλ(Π) as

λLλ(Π) = (λ− 1)L̃λ + 1, (9)

and H̃α is related to the α-Rényi entropy Hα(Πy) as

Hα(Πy) =
1

1− α log2

K∑
k=1

παΘk =
1

α log2 λ
log2

K∑
k=1

παΘk = logλ

(
K∑
k=1

παΘk

) 1
α

(10a)

=⇒ λHα(Πy) =

(
K∑
k=1

παΘk

) 1
α

=

(
K∑
k=1

παΘk

) 1
α

H̃α + 1 (10b)

where we use the definition of α, i.e., α = 1
1+log2 λ

in (10a).

Now, we note from Lemma 3 that L̃λ can be decomposed as

L̃λ =
∑
a∈I

λdaπΘa

=⇒ λLλ(Π) = 1 +
∑
a∈I

(λ− 1)λdaπΘa (11)

where da denotes the depth of internal node ‘a’ in the tree T . Similarly, note from Lemma 4 that H̃α can be
decomposed as

H̃α =
1(∑K

k=1 π
α
Θk

) 1
α

∑
a∈I

[
πΘaDα(Θa)− πΘl(a)Dα(Θl(a))− πΘr(a)Dα(Θr(a))

]

=⇒ λHα(Πy) = 1 +
∑
a∈I

[
πΘaDα(Θa)− πΘl(a)Dα(Θl(a))− πΘr(a)Dα(Θr(a))

]
. (12)

Finally, the result follows from (11) and (12) above.

Lemma 3. The function L̃λ can be decomposed over the internal nodes in a tree T , as

L̃λ =
∑
a∈I

λdaπΘa

where da denotes the depth of internal node a ∈ I and πΘa is the probability mass of the objects at that node.

Proof. Let Ta denote a subtree from any internal node ‘a’ in the tree T and let Ia,La denote the set of internal
nodes and leaf nodes in the subtree Ta, respectively. Then, define L̃aλ in the subtree Ta to be

L̃aλ =
∑
j∈La

πΘj
πΘa

[∑daj−1

h=0 λh
]

where daj denotes the depth of leaf node j ∈ La in the subtree Ta.

Now, we show using induction that for any subtree Ta in the tree T , the following relation holds

πΘa L̃
a
λ =

∑
s∈Ia

λd
a
sπΘs (13)

where das denotes the depth of internal node s ∈ Ia in the subtree Ta.

10



The relation holds trivially for any subtree Ta rooted at an internal node a ∈ I whose both child nodes terminate
as leaf nodes, with both the left hand side and the right hand side of the expression equal to πΘa . Now, consider
a subtree Ta rooted at an internal node a ∈ I whose left child (or right child) alone terminates as a leaf node.
Assume that the above relation holds true for the subtree rooted at the right child of node ‘a’. Then,

πΘa L̃
a
λ =

∑
j∈La

πΘj

daj−1∑
h=0

λh


=

∑
{j∈La:daj=1}

πΘj +
∑

{j∈La:daj>1}

πΘj

daj−1∑
h=0

λh


= πΘl(a) +

∑
{j∈La:daj>1}

πΘj

1 + λ

daj−2∑
h=0

λh



= πΘa + λ
∑

j∈Lr(a)

πΘj

d
r(a)
j −1∑
h=0

λh


= πΘa + λ

∑
s∈Ir(a)

λd
r(a)
s πΘs

where the last step follows from the induction hypothesis. Finally, consider a subtree Ta rooted at an internal
node a ∈ I whose neither child node terminates as a leaf node. Assume that the relation in (13) holds true for
the subtrees rooted at its left and right child nodes. Then,

πΘa L̃
a
λ =

∑
j∈La

πΘj

daj−1∑
h=0

λh


=

∑
j∈Ll(a)

πΘj

1 + λ

daj−2∑
h=0

λh

+
∑

j∈Lr(a)

πΘj

1 + λ

daj−2∑
h=0

λh



= πΘa + λ
∑

j∈Ll(a)

πΘj

d
l(a)
j −1∑
h=0

λh

+ λ
∑

j∈Lr(a)

πΘj

d
r(a)
j −1∑
h=0

λh


= πΘa + λ

 ∑
s∈Il(a)

λd
l(a)
s πΘs +

∑
s∈Ir(a)

λd
r(a)
s πΘs

 =
∑
s∈Ia

λd
a
sπΘs

thereby completing the induction. Finally, the result follows by applying the relation in (13) to the tree T whose
probability mass at the root node, πΘa = 1.

Lemma 4. The function H̃α can be decomposed over the internal nodes in a tree T , as

H̃α =
1(∑K

k=1 π
α
Θk

) 1
α

∑
a∈I

[
πΘaDα(Θa)− πΘl(a)Dα(Θl(a))− πΘr(a)Dα(Θr(a))

]

where Dα(Θa) :=
[∑K

k=1

(πΘka
πΘa

)α] 1
α

and πΘa denotes the probability mass of the objects at any internal
node a ∈ I.

Proof. Let Ta denote a subtree from any internal node ‘a’ in the tree T and let Ia denote the set of internal
nodes in the subtree Ta. Then, define H̃a

α in a subtree Ta to be

H̃a
α = 1− πΘa[∑K

k=1 π
α
Θia

] 1
α

Now, we show using induction that for any subtree Ta in the tree T , the following relation holds[
K∑
k=1

παΘka

] 1
α

H̃a
α =

∑
s∈Ia

[
πΘsDα(Θs)− πΘl(s)Dα(Θl(s))− πΘr(s)Dα(Θr(s))

]
(14)
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Note that the relation holds trivially for any subtree Ta rooted at an internal node a ∈ I whose both child nodes
terminate as leaf nodes. Now, consider a subtree Ta rooted at any other internal node a ∈ I. Assume the above
relation holds true for the subtrees rooted at its left and right child nodes. Then,

[
K∑
k=1

παΘka

] 1
α

H̃a
α =

[
K∑
k=1

παΘka

] 1
α

− πΘa =

[
K∑
k=1

παΘka

] 1
α

− πΘl(a) − πΘr(a)

=

[
K∑
k=1

παΘka

] 1
α

−

[
K∑
k=1

παΘk
l(a)

] 1
α

−

[
K∑
k=1

παΘk
r(a)

] 1
α

+

[ K∑
k=1

παΘk
l(a)

] 1
α

− πΘl(a)

+

[ K∑
k=1

παΘk
r(a)

] 1
α

− πΘr(a)


=
[
πΘaDα(Θa)− πΘl(a)Dα(Θl(a))− πΘr(a)Dα(Θr(a))

]
+

[
K∑
k=1

παΘk
l(a)

] 1
α

H̃l(a)
α +

[
K∑
k=1

παΘk
r(a)

] 1
α

H̃r(a)
α

=
∑
s∈Ia

[
πΘsDα(Θs)− πΘl(s)Dα(Θl(s))− πΘr(s)Dα(Θr(s))

]
where the last step follows from the induction hypothesis. Finally, the result follows by applying the relation in
(14) to the tree T .

8 Proof of Theorem 3

The result in Theorem 3 follows from the above result where each group is of size one, thereby reducing
Dα(Θa) to

Dα(Θa) =

[
M∑
i=1

(
πiI{θi∈ Θa}

πΘa

)α] 1
α

=

 ∑
{i:θi∈ Θa}

(
πi
πΘa

)α 1
α

,

where I{θi∈ Θa} is the indicator function which takes the value one when θi ∈ Θa, and zero otherwise.

9 Proof of Theorem 2

The result in Theorem 2 is a special case of that in Theorem 4 when λ→ 1. It follows by taking the logarithm
to the base λ on both sides of equation

λLλ(Π) = λHα(Πy) +
∑
a∈I

πΘa

[
(λ− 1)λda −Dα(Θa) +

πΘl(a)

πΘa

Dα(Θl(a)) +
πΘr(a)

πΘa

Dα(Θr(a))

]
,

and then finding the limit as λ→ 1.

Using L’Hôpital’s rule, the left hand side (LHS) of the equation reduces to

lim
λ→1

logλ(LHS) = lim
λ→1

Lλ(Π) =
∑
j∈L

πΘjdj ,

where Lλ(Π) = logλ

(∑
j∈L πΘjλ

dj
)

. Similarly, the right hand side (RHS) of the equation reduces to

lim
λ→1

logλ(RHS) = H(Πy) +
∑
a∈I

πΘa

[
1−

(
H(Θa)−

πΘl(a)

πΘa

H(Θl(a))−
πΘr(a)

πΘa

H(Θr(a))

)]
,

where H(Θa) = −
∑K
k=1

πΘka
πΘa

log2

(πΘka
πΘa

)
.
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Finally, the result follows by noticing that

H(Θa)−
πΘl(a)

πΘa

H(Θl(a))−
πΘr(a)

πΘa

H(Θr(a))

=
1

πΘa

[
K∑
k=1

πΘka
log2

(
πΘa

πΘka

)
− πΘk

l(a)
log2

(
πΘl(a)

πΘk
l(a)

)
− πΘk

r(a)
log2

(
πΘr(a)

πΘk
r(a)

)]
(15a)

=
1

πΘa

[
K∑
k=1

πΘk
l(a)

log2

(
πΘa

πΘl(a)

·
πΘk

l(a)

πΘka

)
+ πΘk

r(a)
log2

(
πΘa

πΘr(a)

·
πΘk

r(a)

πΘka

)]
(15b)

=
1

πΘa

[
πΘl(a) log2

(
πΘa

πΘl(a)

)
+ πΘr(a) log2

(
πΘa

πΘr(a)

)

+

K∑
k=1

πΘk
l(a)

log2

(
πΘk

l(a)

πΘka

)
+ πΘk

r(a)
log2

(
πΘk

r(a)

πΘka

)]
(15c)

= H(ρa) +

K∑
k=1

πΘka

πΘa

H(ρka), (15d)

where (15b) follows from (15a) by using the relation πΘka
= πΘk

l(a)
+ πΘk

r(a)
, and (15d) follows from (15c)

using the definitions of ρa and ρka.

10 Proof of Theorem 1

The result in Theorem 1 follows from the above result where each group is of size one, thereby having ρka = 1
∀k at each internal node a ∈ I. It can also be derived as the limiting case of the relation in Theorem 3 by
taking logarithm to the base λ on both sides of the relation and letting λ→ 1.
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